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Abstract: We study the basic properties of the Maxwell equations for nonlinear inhomo-
geneous media. Assuming the classical nonlinear optics representation for the
nonlinear polarization as a power series, we show that the solution exists and is unique
in an appropriate space if the excitation current is not too large. The solution to the
nonlinear Maxwell equations is represented as a power series in terms of the solution of
the corresponding linear Maxwell equations. This representation holds at least for the
time period inversely proportional to the appropriate norm of the solution to the linear
Maxwell equation. We derive recursive formulas for the terms of the power series for
the solution including an explicit formula for the first significant term attributed to the
nonlinearity.

1. Introduction

One of the motivations of this work is the growing interest in the theory of linear and
nonlinear photonic crystals which are man-made periodic dielectric media, see [2, 7, 8,
12, 13, 18, 20, 24, 25, 30, 31, 36, 37, 41, 44, 47, 50]. In [5] we developed a framework
for a consistent mathematical treatment of nonlinear interactions in periodic dielectric
media. This paper provides rigorous proofs of the basic properties of nonlinear inho-
mogeneous Maxwell equations used in [5], including the existence of “well behaved”
solutions for sufficiently long times. In addition, we consider here not only periodic but
general inhomogeneous media.

We consider classical Maxwell equations ([27], Sect. 6.12)

∇ × E (r, t) = −∂tB (r, t)− 4πJB (r, t) , ∇ · B (r, t) = 0, (1.1)

∇ × H (r, t) = ∂tD (r, t)+ 4πJD (r, t) , ∇ · D (r, t) = 0, (1.2)

where H, E, B and D are respectively the magnetic and electric fields, magnetic and
electric inductions, and JD and JB are excitation currents (current sources), r=(r1, r2, r3).
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It is assumed that the Maxwell equations (1.1) and (1.2) are written in dimensionless
variables. We also assume that there are no free electric and magnetic charges, i.e.

∇ · JD (r, t) = 0, ∇ · JB (r, t) = 0, (1.3)

that is fully consistent with (1.1) and (1.2). Notice that Eqs. (1.1) and (1.2) require the
fields B and D to be divergence free at all times. Following to our approach in [5] we
use the excitation current

J =
(

4πJD
4πJB

)
(1.4)

to produce non-zero solutions to the Maxwell equations (1.1) and (1.2), in particular
wavepackets. We assume that J (t) vanishes for negative times, i.e.

JD (r, t) = JB (r, t) = 0, t ≤ 0, (1.5)

and we look for solutions satisfying the following rest condition:

D (r, t) = E (r, t) = H (r, t) = B (r, t) = 0 for t ≤ 0. (1.6)

The dielectric properties of the medium are described by the constitutive (material)
relations between the fields E, D, H and B, which can be nonlinear. For simplicity we
consider the nonmagnetic media, i.e.

B (r, t) = µH (r, t) , µ = 1. (1.7)

The constitutive relations between the fields E and D are of the standard form

D (r, t) = ε (r)E (r, t)+ 4πPNL (E (r, t)) , (1.8)

where

ε (r) = 1 + 4πχ (1) (r) , r = (r1, r2, r3) , (1.9)

is the electric permittivity tensor (dielectric constant) describing the linear properties of
the medium with χ (1) (r) being the linear susceptibility tensor, and 4πPNL (E) is the
nonlinear component of the polarization total polarization P.

The electric permittivity tensor ε (r) is assumed to satisfy the following condition.

Condition 1.1. The 3×3 matrix ε (r)with complex entries εmn (r) is a Hermitian matrix,
i.e. ε∗

mn (r) = εnm (r) , r ∈ R
3. It is bounded and positive definite, namely it satisfies

for some constants ε+ ≥ ε− > 0 the following inequalities:

ε− |e|2 ≤
3∑

m,n=1

εmn (r) e∗men ≤ ε+ |e|2 , r ∈ R
3, e = (e1, e2, e3) ∈ C

3. (1.10)

The dependence of ε (r) on r is sufficiently smooth. Namely, there exists an integer
s > 3/2 such that ε (r) and its inverse η (r) = ε−1 (r) have continuous, bounded over
R

3 derivatives of order up to s, that is as a function of r they have the following norms
bounded:

‖ε‖Cs(R3) ,

∥∥∥ε−1
∥∥∥
Cs(R3)

< ∞. (1.11)
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We allow ε (r) to be Hermitian with complex entries, rather than simply real
symmetric, since such permittivity tensors occur for a general dielectric (gyrotropic)
media (see, for instance, [16] p.86 and [29], p. 49). We also allow for PNL (E) a general
analytic dependence in E (·),

PNL (E) =
∞∑
n=n0

Pn
(
En
)
, n0 ≥ 2, Pn

(
En
) = Pn (E, . . . ,E) , (1.12)

with Pn (E1, . . . ,En) being a n-linear operator that acts on functions Ei (r, t). The
leading term of the degree n0 ≥ 2 in the nonlinear polarization PNL (E) in most of the
applications is either quadratic, n0 = 2, or cubic, n0 = 3, [10, 11].

Following the classical nonlinear optics (see [11], Sect. 2) we assume the n-linear
operators Pn (E) in (1.12) to be of the form

Pn (E) (r, t)
=
∫ t

−∞
· · ·
∫ t

−∞
Pn (r; t − t1, . . . , t − tn; E (r, t1) , . . . ,E (r, tn))

n∏
j=1

dtj ,(1.13)

Pn (r; τ1, . . . , τn; ·) :
(
C

3
)n → C

3, n ≥ n0.

The function Pn (r; τ1, . . . , τn; e1, . . . , en), which is a n-linear form (tensor) acting on
e1, . . . , en ∈ C

3, is called the polarization response function of the order n. For fixed r
and τj the quantityPn (r; τ1, . . . , τn; e1, . . . , en) is a n-linear function of ej with values
in C

3. The Fourier transform of Pn in (τ1, . . . , τn) is called the frequency dependent
susceptibility tensor of the order n. We recall that the representation (1.13) takes explic-
itly into account two fundamental properties of the medium: the time-invariance and the
causality, [11], Sect. 2. We refer to the series (1.12), (1.13) and the analytic function it
defines as causal. Causality implies that Pn (E) (·, t) depends only on E(j)

(·, tj ) with
tj ≤ t .

Note that (1.2) contains ∂tD and by (1.8) the equation implicitly involves ∂tPNL (E).
According to (1.12) and (1.13) the time derivative ∂tPNL (E) equals the sum of terms of
the form

∂tPn (E) (r, t) = Pn,n−1 (E) (r, t)+ Pn,n (E) (r, t) , (1.14)

Pn,n−1 (E) (r, t)

=
n∑
l=1

∫ t

−∞
· · ·
∫ t

−∞
Pn (r; t − t1, ..., 0, . . . , t − tn; E (r, t1) , . . . ,E (r, tn))

∏
j 	=l

dtj ,

Pn,n (E) (r, t)
=
∫ t

−∞
· · ·
∫ t

−∞
Ṗn (r; t − t1, . . . , t − tn; E (r, t1) , . . . ,E (r, tn))

∏
j

dtj ,

where

Ṗn (r; t1, . . . , tn; ·) =
n∑
l=1

Ṗnl (r; t1, . . . , tn; ·) (1.15)

and Ṗnl (r; t1, . . . tn; ·) is the derivative of the tensor Pn (r; t1, . . . tn; ·) with respect to
tl . From (1.14) one can see that to provide the regularity of the multilinear operators we
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have to impose proper conditions on the time derivatives of the kernelsPn (r; t1, . . . tn; ·)
as well as their values at the boundary faces tl = 0. The conditions on the polarization
response functions (tensors) Pn = Pn

(
r; −→τ ; ·) from (1.13) have to imply that the series

(1.12) and a similar series for ∂t (PNL (E)) converge. Here is the condition imposed on
the polarization response functions.

Condition 1.2. For every n ≥ n0 the tensor valued functions

Pn = Pn
(
r; −→τ ) , r ∈ R

3, −→τ = (τ1, . . . , τn) ∈ R
n
+, (1.16)

and their first time derivatives Ṗnl
(·; −→τ ) with respect to τl , l = 1, ..., n, have the

following properties:

(i) they belong for every fixed −→τ to the space Cs
(
R

3
)
, s ≥ 2, consisting of s times,

continuously differentiable, bounded functions of r ;
(ii) tensors Pn

(·; −→τ ) and Ṗnl
(·; −→τ ) as elements of the space Cs

(
R

3
)

continuously
depend on −→τ ∈ R

n+ up to the boundary ∂n−1
R
n+;

(iii) Pn
(
r; −→τ ) satisfy the causality condition

Pn
(
r; −→τ ) = 0, −→τ ∈ R

n − R
n
+, r ∈ R

3; (1.17)

(iv) there exist constants βP > 0, CP > 0 such that Pn and Ṗn in (1.14), (1.15) satisfy∫
R
n+

(‖Pn‖Cs + ∥∥Ṗn∥∥Cs ) d−→τ +
∫
∂n−1R

n+
‖Pn‖Cs d−→τ < CPβ

−n
P . (1.18)

Note that R
n+ is the set of vectors from R

n with nonnegative components τj ≥ 0,
j = 1, ..., n. The (n− 1)-dimensional boundary ∂n−1

R
n+ of this set is the union of n

faces fi = {−→τ ∈ R
n+ : τi = 0

}
.

A typical and rather common in optics example of the response function is

Pn
(
r; −→τ ; −→e ) =

{
exp
{
−σ∑n

j=1 τj

}
pn
(
r; −→e ) if all τj ≥ 0

0 otherwise
, (1.19)

where pn
(
r; −→e ) is a n -linear form of −→e ∈ (C3

)n
, σ > 0 is a constant.

We study solutions {H (t) ,E (t) ,B (t) ,D (t)} to the Maxwell equations on the time
interval −∞ < t ≤ T , T > 0. The solutions are continuous bounded functions of
time t , taking on values in the Sobolev space Hs with an integer s > 3/2 and such
that (1.6) holds. Using common notations we denote the corresponding Banach space
of such functions by CT0,Hs = C0 ([−∞, T ] ; Hs). The full list of functional spaces and
other related concepts is provided in the next section. Solutions of (1.1), (1.2), (1.7) and
(1.8) are assumed to have time derivatives from C0

(
[−∞, T ] ; Hs−1

)
. Under natural

assumptions, such as Condition 1.2, the series (1.12) converges in a ball in the Banach
spaceC0 ([−∞, T ] ; Hs) and determines an analytic function PNL (E (·)) of E (t). Since
PNL includes integration with respect to time, its time derivative ∂t (PNL (E (·))) also
belongs toC0 ([−∞, T ] ; Hs). All differential operators and functions in (1.1), (1.2) and
(1.8) are well-defined for such solutions (a detailed definition of a solution is given in
Definition 2.2). In the following sections we discuss in detail the relevant concepts and
properties of functions analytic in Banach spaces. We also analyze a special class of
analytic functions arising in the classical nonlinear optics for which P(n) is defined by
(1.13).
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In this paper we assume the space dimension d = 3. The space dimension d = 1 or
d = 2 when the coefficients and the fields do not depend on r2, r3 or r3 respectively. In
these cases our results hold too, moreover, the condition s > 3/2 is replaced by s > d/2.

Using common notations (see the next section if needed) we can formulate one of
our main results as follows.

Theorem 1.3. Let s > 3/2 and Conditions 1.1 and 1.2 hold. Then the series (1.13)
converges for ‖E‖C0([−∞,T ];Hs ) < RP , where RP depends on CP , βP in (1.18). Let
J ∈ L1,0 ([−∞, T ] ; Hs) and

‖J‖L1([−∞,T ;]Y ) ≤ δ < δ0, 1 + T <
C

δ
n0−1
0

, (1.20)

where the constants C, δ0 depend on n0 and the constants CP , βP , ‖ε (·)‖Cs(R3), ε−,
ε+ from Conditions 1.1 and 1.2. Then there exists a unique solution

W (r, t) = (D (r, t) ,B (r, t) ,E (r, t) ,H (r, t)) ∈ C0

(
[−∞, T ] ; (Hs

)2) (1.21)

with ‖E‖C0([−∞,T ];Hs ) < RP to Eqs. (1.1), (1.2), (1.6), (1.7), (1.8). This solution W (r, t)
is an analytic function of J and it can be represented by a convergent power series

W = W (J) =
∞∑
n=n0

Wn (J) , (1.22)

where Wn is a n-linear operator. The operators Wn can be explicitly expressed in terms
of Pm by recursive relations (7.49) (see Theorem 7.8).

The proof of Theorem 1.3 is given in Sect. 8. More detailed statements are provided
by Theorem 7.8 and Lemma 7.4. We would like to remark that the proof of the existence
of solutions as well as the studies of their properties (see [5, 6]) are based on the reduction
of the system (1.1), (1.2), (1.6), (1.7), (1.8) to the problem (7.36) for divergence-free
variables D, B.

The primary focus of this paper is on the following subjects: (i) the existence and the
uniqueness of the solution to the nonlinear Maxwell equations (1.1), (1.2), (1.6), (1.7),
(1.8) for large time intervals; (ii) the representation of solutions in the form of convergent
series involving causal operators. The proofs of the existence and the uniqueness provide
a basis for a more detailed nonlinear interaction theory along the lines of [5, 6]. Our
choice of the theory of analytic functions in infinite dimensional spaces as a technical
tool is motivated primarily by the representation of the nonlinear polarization by the
series (1.12), (1.13) which is standard in classical nonlinear optics. In addition to that,
it turns out that the analytic approach based on representations of type (1.12), (1.13),
(1.22) has additional advantages. In particular, it allows to give a rigorous meaning to
some frequency-dependent nonlinearities, see [6] for details. It also allows to consider
general nonlinearities as long as we can control their magnitude. In particular, we do
not impose any specific structural conditions, such as the symmetry or skew-symme-
try, sign conditions, etc., on the nonlinear tensors. Series expansions with the resulting
analyticity naturally yield a rather constructive description of the solutions in the form
common in the physical literature. Another important incentive for using the analytic
functions approach is its usefulness in further analysis of the solutions, including their
asymptotic approximations, when the excitation currents J (t) are nearly monochromatic
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wave packets, [5], with relative frequency bandwidth � = 	ω
ω

→ 0. It turns out, [5],
that � determines a naturally arising ”slow time” τ = �t . It also follows from [5] that to
analyze solutions of the Maxwell equation as � → 0, t → ∞ with τ = �t being fixed,
one needs uniform with respect to � approximations of the solutions as functions of the
excitation currents J (t). The analytic function approach and series representations allow
to get that kind of approximations.

To carry out the analytic function approach to the construction of the solutions we
need to properly recast the original Maxwell equations (1.1), (1.2). This recasting is
done in two steps.

The first step is to choose the divergence-free fields D (r, t), B (r, t) as the primary
field variables. When changing the variables we keep in mind that the nonlinear polari-
zation has the form (1.12), (1.13) implying that for any instant t the field D (r, t) depends
on all the values of the field E

(·, t ′) for prior times t ′ < t . This is one of the factors
which has to be taken into account for the choice of functional spaces, namely, the
spaces C ([−∞, T ] ; H) with a suitable Hilbert space H. An analysis shows that the
choice of a suitable function space H of functions V (r) of the position variable r should
be based on the following considerations. First, if U (r, t) is a solution of the relevant
linear Maxwell equations, U (r, t) must remain in H at all times, and, more than that,
the norm ‖U (·, t)‖H must remain bounded as time evolves. This property is important
for the control of the magnitude of an H -valued solution for large time intervals that
is crucial for existence on such intervals. The second condition on H is that the multi-
linear forms (1.13) must be continuous in H. This requires that H must be closed with
respect to the pointwise multiplication of functions. For instance, the spaceL2 of square
integrable functions is definitely not suitable. We show that the space H = H̊s

M with
integer s > 3/2 introduced in Sect. 3 has both required properties.

The paper is structured as follows. In Sect. 2 we introduce function spaces, give a
definition of a solution of the nonlinear Maxwell system and prove Theorem 2.4 on
the uniqueness of such a solution. The equivalence of norms generated by the linear
Maxwell operator and Sobolev norms and related issues are discussed in Sect. 3. In
Sect. 4 we give necessary definitions and facts from the theory of analytic operators
(functions) in Banach spaces. Then we provide the proof of the related Implicit Function
Theorem with particular emphasis on explicit constructions of polynomial operators and
explicit estimates on the radius of convergence of relevant power expansions. In Sect. 5
we consider the case of causal multilinear operators generalizing (1.12), (1.13). It is the
most technical part of the paper. In Sect. 6 we consider Maxwell equations in a general-
ized operator setting. Section 7 is devoted to an integral form of the Maxwell equations
involving only bounded operators. We call it a regular integral form. The reduction to
this form essentially uses the fact that the nonlinear polarization is given by causal inte-
gral operators of the form (1.12), (1.13). Then we prove results for the original Maxwell
equations (1.1), (1.2), (1.6), (1.7), (1.8), in particular Theorem 1.3 and more detailed
statements such as Theorem 7.8.

2. Function Spaces for Solutions

In this section we define suitable function spaces for solutions to Maxwell equations and
introduce notations.

2.1. Notations and function spaces. Below we provide a list of common and a few
special notations needed for our analysis.



Nonlinear Maxwell Equations in Inhomogeneous Media 525

∂α = ∂
α1
1 ∂

α2
2 ∂

α3
3 where ∂j is the partial derivative with respect to the space coordi-

nate rj and α = (α1, α2, α3) is a multiindex with αj being nonnegative integers and
|α| = α1 + α2 + α3.

L2
(
R

3
) = L2

(
R

3,C3
) = L2 the Hilbert space of 3-dimensional vector fields v (r)

with the scalar product

(u, v) =
∫

R3
u∗(r)v (r) dr =

∫
R3

u · v (r) dr, u · v =
3∑
j=1

ujvj , (2.1)

where u is a vector with components complex conjugate to the components of u, and
u∗ = uT is the vector adjoint of u and for a vector (column) u the notation uT stands for
a vector transposed to it. We will also use the notation εT for a matrix transposed to the
matrix ε. If we have a term uv, where u and v are matrices or vectors then vectors are
treated as corresponding matrices and uv is understood as a standard matrix product. In
our problems v (r) can be, for instance, the electric or magnetic field.

L̊2
(
R

3
) = L̊2 is the subspace of L2

(
R

3
)

consisting of the divergence free
3-dimensional fields, i.e. the subspace of L2

(
R

3
)

orthogonal to all the fields of the
form grad ϕ (r), where ϕ (r) ∈ C∞

0

(
R

3
)
.

0 is the L2-orthogonal projection operator on L̊2.
L2

2 = L2 × L2, L̊2
2 = L̊2 × L̊2.

Hs
q

(
R

3
) = Hs

q = Hs , s = 0, 1, 2, . . . , is the Sobolev space of q-dimensional vector
fields (or n-linear form (tensor) fields that are vectors of dimension qn). For vector fields
V (r) = {

Vj (r) : 1 ≤ j ≤ q
}
, r ∈ R

3 (index q = 3, 6 will be often suppressed) the
Sobolev norm

‖V‖2
Hs =

∑
|α|≤s

∫
R3

∣∣∂αV (r)∣∣2 dr, (2.2)

with ∂α = ∂
α1
1 ∂

α2
2 ∂

α3
3 , |α| = α1 + α2 + α3 and

|v|2 = v · v = |v1|2 + ...+ ∣∣vq ∣∣2 (2.3)

being the standard Euclidean norm of a vector v ∈ C
q . For a n-linear form (tensor) field

V (r; ·) of tensors acting on vectors e ∈ C
q the Sobolev norm ‖V‖2

Hs is given by (2.2),
where the norm of a n− linear tensor V′ = ∂αV (r) is given for any given α, r by∣∣V′∣∣ = sup

|e1|=...=|en|=1

∣∣V′ (e1, . . . , en)
∣∣ (2.4)

with
∣∣ej ∣∣ being the standard Euclidean norm of a vector ej ∈ C

q .

H̊s = Hs
3 ∩ L̊2 and

‖u‖H̊s = ‖u‖Hs , u ∈ H̊s . (2.5)

CTY = C ([−∞, T ] ;Y ) , where Y is a Banach space, is the space of Y− valued
functions y (t), −∞ < t ≤ T , with the norm defined by

‖y‖CTY = sup
−∞<t≤T

‖y (t)‖Y . (2.6)
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In particular,
CTHs = C ([−∞, T ] ; Hs), T > 0, is a Banach space of Hs-valued continuous trajec-

tories U (t), −∞ < t ≤ T in Hs with the norm

‖U‖C([−∞,T ];Hs ) = sup
−∞<t≤T

‖U (t)‖Hs . (2.7)

CT0,Hs = C0 ([−∞, T ] ; Hs), T > 0, is a Banach space of Hs-valued continuous
trajectories U (t), −∞ < t ≤ T , such that U (t) = 0, −∞ < t ≤ 0 equipped with the
norm (2.7).

CT0,Y = C0 ([−∞, T ] ;Y ) is defined similarly for a Banach space Y .

LTY = L2 ([−∞, T ] ;Y ) is the space of Y -valued functions of t ∈ [−∞, T ] that are
square Lebesgue integrable; the norm in LTY is defined by

||U||2LTY =
∫ T

−∞
||U (t)||2Y dt. (2.8)

L2,0 ([−∞, T ] ;Y ) is the subspace of functions j from L2 ([−∞, T ] ;Y ) such that
j (t) = 0, −∞ < t ≤ 0.
L1 ([−∞, T ;Y ]) is the space of Y -valued functions of t ∈ [−∞, T ] with the norm

||j ||L1([−∞,T ;Y ]) =
∫ T

0

∣∣∣∣j (t ′)∣∣∣∣
Y
dt ′. (2.9)

L1,0 ([−∞, T ] ;Y ) is the subspace of functions j from L1 ([−∞, T ] ;Y ) such that
j (t) = 0, −∞ < t ≤ 0.
Cs
(
R

3
) = Cs , s = 1, 2, . . . , is the space of s times continuously differentiable

vector fields or n-linear form (tensor) fields. The function norm in Cs
(
R

3
)

is defined by
the formula

‖V‖Cs = sup
|α|≤s, r∈R3

∣∣∂αV (r)∣∣ , (2.10)

where for a vector ∂αV (r)with given α, r the norm |∂αV (r)| is determined by (2.3) and
for a n-linear form (tensor) field the norm |∂αV (r)| of a tensor ∂αV (r) is determined
using (2.4).

HM is a Hilbert space consisting of the 6-dimensional fields from L2
2 but with the

modified scalar product that includes a positive definite Hermitian matrix η (r) of the
form

(U,V)HM
=
∫

R3
U(r) ·�(r)V (r) dr, � (r) =

[
η (r) 0

0 I

]
,U =

[
D
B

]
. (2.11)

Under the condition (3.2), which will be imposed on η (r), the norm ‖·‖HM
is equivalent

to the L2-norm ‖·‖L2 .
The space H̊M consists of the 6-dimensional fields from L̊2

2 with the scalar product
(2.11),

(U,V)HM
= (U,V)H̊M

. (2.12)

H̊s
M are the spaces generated by the linear Maxwell operator; they are considered in

Sect. 3, see (3.7).
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2.2. Solutions and their uniqueness. To study the uniqueness problem we express D in
terms of E using (1.8). Equation (1.1), (1.2), after taking into account (1.7), (1.8), turn
into

∇ × E (r, t) = −∂tB (r, t)− 4πJB (r, t) , (2.13)

∇ × B (r, t) = ε∂tE (r, t)+ 4π∂tPNL (E) (r, t)+ 4πJD (r, t) , (2.14)

∇ · B (r, t) = 0,∇ · (εE + 4πPNL (E)) (r, t) = 0. (2.15)

It is assumed that JB, JD ∈ L1,0 ([−∞, T ] ; Hs) for an integer s > 3/2. We impose the
following condition on the nonlinearity PNL (E).

Condition 2.1. We assume that the nonlinear operators PNL (E) and ∂tPNL (E) are de-
fined for ||E||CTHs < RP with RP > 0 and an integer s > 3/2. For every T1 ∈ [0, T ]

they satisfy the Lipschitz condition

∫ T1

0
||∂tPNL (E1) (t)− ∂tPNL (E2) (t)||2H0 dt

≤ KL

∫ T1

0
||E1 (t)− E2 (t)||2H0 dt (2.16)

for every E1,E2 ∈ CT0,Hs such that ||E1||CTHs , ||E2||CTHs < RP.

Now we are ready to define a solution to (2.13), (2.14), (2.15).

Definition 2.2. A pair of functions B (r, t), E (r, t) is called a solution of (2.13), (2.14),
(2.15) if for some T > 0 we have B ∈ CT0,Hs = C0 ([−∞, T ] ; Hs), E ∈ CT0,Hs =
C0 ([−∞, T ] ; Hs), ∂tB ∈ CT

0,Hs−1 , ∂tE ∈ CT
0,Hs−1 with s ≥ 2 and ||E||CTHs < RP.

The corresponding quad D (r, t), B (r, t), E (r, t), H (r, t) with H (r, t) and D (r, t)
determined respectively by (1.7), (1.8) is called a solution to (1.1), (1.2), (1.6), (1.7),
(1.8).

Note that the curl ∇× and the divergency ∇· are bounded operators from Hs to
Hs−1, and when they are applied to functions of (r, t) they become bounded operators
from CTHs = C ([−∞, T ] ; Hs) to CTHs−1 . Therefore for ||E||CTHs < RP the left-hand and

right-hand sides of (2.13), (2.14), (2.15) are well-defined as elements of CTHs−1 .

The next lemma provides a sufficient condition for Condition 2.1 to hold.

Lemma 2.3. Let Condition 1.2 hold. Then Condition 2.1 holds, and RP = RP (βP ) is
the same as in Lemma 7.4, RP depends only on βP from Condition 1.2.

Proof. The statement follows from Lemma 7.4. �
The following theorem shows that Condition 2.1 (and consequently Condition 1.2)

implies uniqueness of solutions.

Theorem 2.4. Let Condition 2.1 hold together with (1.10) and all conditions from
Condition 1.2 with only one exception, namely (1.11) holds for s = 0. Let JD, JB ∈
CT

0,H1 , and suppose that B1,E1 ∈ C0
(
[−∞, T ] ; H2

)
and B2,E2 ∈ C0

(
[−∞, T ] ; H2

)
are two solutions to (2.13), (2.14). Then B1 = B2, E1 = E2.
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Proof. Note that by Definition 2.2 the solutions satisfy ||E1||CTHs < RP, ||E2||CTHs <
RP, ∂tB1 ∈ CT

0,Hs−1 , ∂tE1 ∈ CT
0,Hs−1 , ∂tB2 ∈ CT

0,Hs−1 , ∂tE2 ∈ CT
0,Hs−1 . Therefore the

difference B3 = B1 − B2, E3 = E1 − E2 of the solutions satisfies the system

ε−1 (∇ × B3) = ∂tE3 + 4πε−1∂t (PNL (E1)− PNL (E2)) , (2.17)

∇ × E3 = −∂tB3, (2.18)

E3 ∈ C0
(
[−∞, T ] ; H2

)
. Now we, first, dot-multiply Eqs. (2.17) and (2.18) by respec-

tively εTE3 and −B3, and then add up them, integrate in r and t and take the real part.
We have∫ [

E3 · ∇ × B3 − B3 · ∇ × E3 + E3 · ∇ × B3 − B3 · ∇ × E3
]
dr = 0, (2.19)

hence, for T1 ≤ T ,

Re
∫ T1

−∞

∫ (
E3 · ε∂tE3 + B3∂tB3

)
drdt = Re

∫ T1

0

∫
E3 · g2drdt, (2.20)

g2 = 4π∂t (PNL (E1)− PNL (E2)) . (2.21)

Let us introduce

N (E,B,T ) =
∫ (

E · εE + B · B
)
dr

∣∣∣∣
t=T

= ||(E,B)||2
H̊M

, (2.22)

where the norm H̊M is defined in (2.11). Since ∂tB3 ∈ CT
0,H1 , ∂tE3 ∈ CT

0,H1 , B3 ∈ CT
0,H2 ,

E3 ∈ CT
0,H2 and ε is Hermitian we have

Re
∫ T1

−∞

∫ (
E3 · ε∂tE3 + B3 · ∂tB3

)
drdt = 1

2
N (E3,B3,T1) . (2.23)

Then we estimate the right-hand side of (2.20) using (1.10) as follows∣∣∣∣
∫

E3 · g2 dr

∣∣∣∣ ≤ 1

2

(
||E3 (t)||2H0 + ||g2 (t)||2H0

)

≤ 1

2
||E3 (t)||2H0 + 2π2

∫
|∂t [PNL (E1) (t)− PNL (E2) (t)]|2 dr.

(2.24)

Based on Condition 2.1 we get
∫ T1

0

∫
|∂t [PNL (E1) (t)− PNL (E2) (t)]|2 drdt ≤ KL

∫ T1

0
||E3 (t)||2H0 dt. (2.25)

According to (1.10) we have

ε− ||E3 (t)||2H0 ≤ N2 (E3,B3,t) . (2.26)

Now combining (2.20) and (2.23), (2.24), (2.25) and (2.26) we obtain

N2 (E,B,T1) ≤
(

1 + 4π2KL

)
ε−1
−
∫ T1

0
N2 (E,B,t) dt. (2.27)
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Applying the Gronwall inequality to the estimate (2.27) we get for T1 ≥ 0,

N2 (E3,B3,T1) ≤ N2 (E3,B3,0) exp
[(

1 + 4π2KL

)
ε−1
− T1

]
. (2.28)

Since N2 (E3,B3,0) = 0, the inequality (2.28) implies N2 (E3,B3,T1) = 0 and,
consequently E3 = B3 = 0. �
Remark 2.5. Note that the proof of the uniqueness of solutions does not use the diver-
gence-free condition (2.15), which is very essential for the proof of their existence.

The proof of the existence uses a reduction of (1.1), (1.2), (1.6) and (1.8) to an integral
equation for the divergence-free fields B and D considered in Sect. 7.

3. Linear Maxwell Operator

In this section we consider some important properties of the linear Maxwell equations.
In the linear case (1.8) takes the form

E (r, t) = η (r)D (r, t) , η (r) = [ε (r)]−1 , (3.1)

where the Hermitian matrix η (r), called the impermeability tensor, satisfies the inequal-
ity

ε−1
+ |e|2 ≤

3∑
m,n=1

εmn (r) e∗men ≤ ε−1
− |e|2 , r ∈ R

3, e ∈ C
3, (3.2)

as it follows from (1.10). Based on (1.7), (3.1) we rewrite Eqs. (1.1),(1.2) in the form

∂tU (t) = −iMU (t)− J (t) ; U (t) = 0 for t ≤ 0, (3.3)

where

U =
[

D
B

]
, M = i

[
0 ∇×

−∇×η 0

]
, ∇×B = ∇ × B, J = 4π

[
JD
JB

]
, (3.4)

and η denotes the operator of multiplication by η (r). We write the linear Maxwell
operator M in the form

M = i∇××�, ∇×× =
[

0 ∇×
−∇× 0

]
,

[�V] (r) = �(r)V (r) , � (r) =
[

η (r) 0
0 1

]
, (3.5)

where ∇× is the curl operator. In view of (3.2) we have

α−I6 ≤ �(r) ≤ α+I6, r ∈ R
3, with I6 being 6 × 6 identity matrix (3.6)

and α+ = max
(

1, ε−1
−
)
, α− = max

(
1, ε−1

+
)
. We introduce now the scale of Hilbert

spaces H̊s
M , s = 0, 1, . . . , consisting of divergence free (3 + 3)-dimensional vector-

fields V(r) with the scalar product

(U,V)H̊s
M

= (MsU,MsV
)

H̊M
+ (U,V)H̊M

, s = 0, 1, . . . , (3.7)

where (U,V)H̊M
is defined by (2.11). Evidently, (U,V)H̊0

M
= 2 (U,V)H̊M

. In the fol-

lowing subsections we study properties of the spaces H̊s
M .
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3.1. Spaces of divergence-free fields. We consider the standard Hilbert space L2 =
L2
(
R

3,C3
)

of Lebesgue square-integrable 3-dimensional complex-valued vector fields

in R
3, and we consider a subspace L̊2 of L2, which is the closure of all smooth vector

fields from L2 with zero divergence. We denote by 0 the L2-orthogonal projection
operator onto L̊2. The space L̊2 can be equivalently defined as a space of all the fields
orthogonal to every field of the form grad ϕ (r), where ϕ runs the space C∞

0

(
R

3
)

(the

set of infinitely differentiable scalar functions with finite support). The space L̊2 can be
explicitly described in terms of the Fourier transform F which is given by the following
formula

Ã (k) = F (A) (k) = 1

(2π)3

∫
R3
e−ik·rA (r) dr,

A (r) = F−1 (Ã) =
∫

R3
eik·rÃ (k) dr. (3.8)

Note that

∂̃αA (k) = i|α|kαÃ (k) ,kα = k
α1
1 k

α2
2 k

α3
3 . (3.9)

By Plancherel’s theorem

1

(2π)3/2

∫
R3

|A (r)|2 dr =
∫

R3

∣∣Ã (k)∣∣2 dk. (3.10)

Hence the Sobolev norm (2.2) can be written in terms of the Fourier transform as

‖A‖2
Hs = (2π)3/2

∫
R3

∑
|α|≤s

∣∣kα∣∣2 ∣∣Ã (k)∣∣2 dk. (3.11)

An equivalent norm is given in terms of the Fourier transform by

‖A‖2
s,F = (2π)3/2

∫ (
|k|2s + 1

)
|F (A) (k)|2 dk. (3.12)

Obviously,

c−1
H ‖A‖2

Hs ≤ ‖A‖2
s,F ≤ cH ‖A‖2

Hs . (3.13)

According to (3.9) the image FL̊2 of the Fourier transform F is:

FL̊2 =
{

Ã (k) ∈ L2 : Ã (k) · k = 0 for almost all k ∈ R
3
}
. (3.14)

By (3.12) the space H̊s consists of functions{
U ∈ L2:

(
|k|2 + 1

)s/2 F (U) (k) ∈ L2, k·F (U) (k) = 0

}
. (3.15)

The projection 0 in terms of the Fourier transform is written explicitly for every k as
the orthogonal projection in C

3 of a vector Ã (k) onto the plane k · Ã (k) = 0, i.e.

0 = F−1̃0F, ̃0Ã (k) = Ã (k)− k · Ã (k)
(k,k)

k, (3.16)
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and the curl operator takes the form

∇× = F−1∇̃×F, ∇̃×
Ã (k) = ik × Ã (k) . (3.17)

Evidently,

2
0 = 0, ∇×0 = 0∇× = 0∇×0 = ∇×. (3.18)

Since
∣∣∣̃0Ã (k)

∣∣∣ ≤ ∣∣Ã (k)∣∣ for every k, the operator0 has norm 1 in both norms (3.12)

and (2.2) for every s,

‖0‖Hs ,Hs = 1. (3.19)

For any operator K acting in L2 we introduce an operator K̊ = 0K0 that acts in
L̊2 ⊂ L2, in particular,

η̊v = 0η0v = 0ηv, v ∈ L̊2. (3.20)

Notice that (3.16)–(3.20) imply

0K0 = K̊0, ∇̊×
0 = ∇×0 = ∇×, 	̊0 = 	0. (3.21)

Notice that if the medium is homogeneous and isotropic, i.e. � = I6, then the
Maxwell operator has constant coefficients and Maxwell equations can be solved explic-
itly in terms of the Fourier transform determined by (3.8). In this case ellipticity of the
curl operator ∇× on divergence free fields can be shown to be elementary using (3.17).
According to the well-known property of the cross-product we have

k × (k × Ã (k)
) = − |k|2 Ã (k)+ (k · Ã (k)

)
k (3.22)

and, hence,
∣∣∣∇̃×

Ã (k)
∣∣∣2 = (k × Ã (k)

) ·
(

k × Ã (k)
)

= − (k × (k × Ã (k)
)) · Ã (k) = ∣∣Ã (k)∣∣2 · |k|2 − ∣∣(k · Ã (k)

)∣∣2 .
Since k · Ã (k) = 0 for A ∈ L̊2, the Sobolev norm in (3.12) coincides on L̊2× L̊2 with
the norm defined in terms of the curl operator ∇××:

||U||2s,F = ∣∣∣∣(∇××)s U
∣∣∣∣2

L̊2
+ ||U||2

L̊2
(3.23)

= (2π)3/2
∫ [∣∣∣(∇̃××)s F (U) (k)

∣∣∣2 + |F (U) (k)|2
]
dk,

and by (3.13) this norm is equivalent to the norm in (3.12), i.e. there exists a finite
positive constant cH such that

c−1
H ||U||2

H̊s
≤ ∣∣∣∣(∇××)s U

∣∣∣∣2
L̊2

+ ||U||2
L̊2

≤ cH ||U||2
H̊s
. (3.24)

An analogous property for the case of variable coefficients is given in the next subsection
(see (3.41), (3.42)).
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3.2. Maxwell operator with variable coefficients. When coefficients of the matrix η are
variable we consider the linear Maxwell operator M̊ :

M̊ is the restriction of M = ∇××� to L̊2 × L̊2,M = ∇××�̊ (3.25)

with ∇×× and� = �(r) defined in (3.5). The operator M̊ is self-adjoint in H̊M , namely
the following well-known lemma holds (for the proof see [9, 17]).

Lemma 3.1. Assume that: (i) η (r) is a 3 × 3 Hermitian matrix that satisfies (3.2); (ii)
η (r) has bounded measurable coefficients (in particular, it is sufficient that η (·) ∈
C0
(
R

3
)
). Then the operator M̊ is self-adjoint in the space H̊M with the scalar product

defined by (2.11), the domain of M̊ is H̊1×H̊
1
, H̊1 being defined by (3.15).

The following lemma plays an important role in our analysis of the nonlinear
Maxwell equations, in particular it is used to estimate the norms of η̊ and η̊−1 that
are included in the nonlinearity according to (7.35).

Lemma 3.2. Let s ≥ 0 be an integer, and η (r) ∈ Cs be a 3 × 3 Hermitian matrix
satisfying (3.2). Then there exist positive constants c± = c± (s) such that

c− ‖v‖H̊s ≤ ∥∥η̊v
∥∥

H̊s ≤ c+ ‖v‖H̊s , v ∈ H̊s . (3.26)

The operator η̊ in H̊s has a bounded inverse η̊−1,

∥∥∥η̊−1
∥∥∥ ≤ c−1

− . In addition to that,

there exist positive constants c′± such that

c′− ‖v‖H̊s ≤
∥∥∥(∇̊×)s

η̊v
∥∥∥2

L̊2
+ ∥∥η̊v

∥∥2
L̊2

≤ c′+ ‖v‖H̊s . (3.27)

Proof. Let us show first that the statement of Lemma 3.2 holds for s = 0, namely

ε−1
+ ‖v‖L̊2

≤ ∥∥η̊v
∥∥

L̊2
≤ ε−1

− ‖v‖L̊2
, v ∈ L̊2. (3.28)

It follows from (3.2) and (3.20) thatη̊ satisfies for v ∈ L̊2 the inequality

(v, v)L̊2
= (0v,0v)L2

≤ ε+ (0v, η0v)L2
= ε+ (v,0η0v)L2

= ε+
(
v,η̊v

)
L̊2
.

Note that η̊ is a bounded self-adjoint positive operator in L̊2 and there exists the square
root

√
η̊ which is a bounded positive self-adjoint operator too. Taking v = √η̊u we get

for any u ∈ L̊2 the inequality

ε+
(√

η̊u,η̊
√
η̊u
)

L̊2
≥
(√

η̊u,
√
η̊u
)

L̊2
= (u,η̊u

)
L̊2

≥ ε−1
+ (u,u)L̊2

, (3.29)

therefore for any v ∈ L̊2,

∥∥η̊v
∥∥2

L̊2
= (η̊v,η̊v

)
L̊2

≥ ε−2
+ (v, v)L̊2

. (3.30)

We also derive from (3.2) that (ηv, ηv)L̊2
≤ ε−2

− (v, v)L̊2
and obtain (3.28).
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Let us consider now ∂α
(
η̊v
)

for a multiindex α such that |α| ≤ s. According to (3.9),
(3.16) operators ∂α commute with 0 and we have

∂α
(
η̊v
)−η̊∂αv = 0

[
∂α (ηv)− η∂αv

]
, for v ∈ H̊s . (3.31)

The relations (3.19) and (3.31) evidently imply the inequality

∥∥∂α (η̊v
)−η̊∂αv

∥∥
L̊2

≤ ∥∥∂α (ηv)− η∂αv
∥∥

L2
. (3.32)

It follows from the Leibnitz formula applied to ∂α (ηv) that the difference ∂α (ηv)−η∂αv
will involve only the partial derivatives of v and η of respective order not exceeding s−1
and s. Combining this observation with (7.8) and the interpolation inequalities (3.64)
we get the estimate

∥∥∂α (ηv)− η∂αv
∥∥

L2
≤ ‖η‖Cs

(
ε ‖v‖Hs + Cs,ε ‖v‖L2

)
(3.33)

which holds for any 0 < ε < 1 with a constant Cs,ε depending only on indicated
parameters. For v ∈ H̊s evidently ‖v‖Hs = ‖v‖H̊s and, hence, (3.33) implies

∥∥∂α (ηv)− η∂αv
∥∥

L2
≤ ‖η‖Cs

(
ε ‖v‖H̊s + Cs,ε ‖v‖L̊2

)
, 0 < ε < 1, v ∈ H̊s . (3.34)

Considering nowη̊∂αv we notice that (3.28) implies

ε−1
+
∥∥∂αv

∥∥
L̊2

≤ ∥∥η̊∂αv
∥∥

L̊2
≤ ε−1

−
∥∥∂αv

∥∥
L̊2
, (3.35)

and, consequently,

ε−2
+
∑
|α|≤s

∥∥∂αv
∥∥2

L̊2
≤
∑
|α|≤s

∥∥η̊∂αv
∥∥2

L̊2
≤ ε−2

−
∑
|α|≤s

∥∥∂αv
∥∥2

L̊2
. (3.36)

Combining (3.32), (3.33) and (3.36) we obtain

c− ‖v‖H̊s ≤ ‖v‖L̊2
+
∑
|α|=s

∥∥∂α (η̊v
)∥∥

L̊2
≤ c+ ‖v‖H̊s (3.37)

with constants c± depending only on s, ε−1
± and ‖η‖Cs . The last inequalities readily

imply the inequalities (3.26). By (3.30) the null-space ofη̊ is trivial andη̊−1 is bounded
on the image ofη̊; sinceη̊ is self-adjoint in L̊2 (3.30) implies that the image ofη̊ coincides
with L̊2 andη̊−1 is a bounded operator defined on L̊2. Boundedness of η̊−1 in Hs follows
from (3.26). To deduce (3.27) from (3.26) we apply (3.24). �

Let (2)0 be the orthogonal projector from L2
2 onto L̊2

2, i.e.


(2)
0

[
D
B

]
=
[
0D
0B

]
. (3.38)
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Lemma 3.3. Let s ≥ 0 be an integer,�(r) ∈ Cs be a 6 × 6 Hermitian matrix satisfying
the condition

ξ−I6 ≤ �(r) ≤ ξ+I6 where ξ+ ≥ ξ− > 0, r ∈ R
3. (3.39)

Then �̊ = 
(2)
0 �̊

(2)
0 satisfies on L̊2

2 the following inequality analogous to (3.26):

c− ‖V‖H̊s×H̊s ≤
∥∥∥�̊V

∥∥∥
H̊ s×H̊ s

≤ c+ ‖V‖H̊s×H̊s , V ∈ H̊s × H̊s , (3.40)

and

c′− ‖V‖H̊s×H̊s ≤
∥∥∥(∇̊××)s

�̊V
∥∥∥2

L̊2
2

+ ‖V‖2
L̊2

2
≤ c′+ ‖V‖H̊s×H̊s . (3.41)

The operator �̊ in H̊s × H̊s has a bounded inverse �̊−1,

∥∥∥�̊−1
∥∥∥ ≤ c−1

− .

The proof of Lemma 3.3 is analogous to the proof of Lemma 3.2.
The following statement on the equivalence of the Hilbert spaces H̊s

M and H̊s × H̊s

generalizes (3.24).

Lemma 3.4. Suppose that η (r) satisfies all the conditions of Lemma 3.2 and the
operator M̊ is defined by (3.25). Then for any integer s ≥ 1 there exist positive constants
c± such that

c− ‖V‖H̊s×H̊s ≤ ‖V‖H̊s
M

≤ c+ ‖V‖H̊s×H̊s , V ∈ H̊s × H̊s . (3.42)

The proof of Lemma 3.4 together with some auxiliary statements are subjects of the
next subsection.

3.3. Abstract Sobolev spaces and the spaces equivalence. Notice that for integer values
of s ≥ 0 the spaces H̊s and H̊s × H̊s are generated respectively by the linear self-adjoint

operators
[
∇̊×]s

in L̊2 and
[
i∇̊××]s

in L̊2
2. Indeed, it follows elementarily from the

relations (3.8)–(3.18) that

[
i∇̊××]∗

i∇̊×× =
[
i∇̊××]2 =

[−	0 0
0 −	0

]
, (3.43)

where 	 is the Laplace operator. From (3.24) we obtain that

c−1
H ‖V‖2

H̊s×H̊s
≤
∥∥∥(∇̊××)s V

∥∥∥2

L̊2
2

+ ‖V‖2
L̊2

2
≤ cH ‖V‖2

H̊s×H̊s
. (3.44)

To relate the Hilbert spaces H̊s
M and H̊s × H̊s when η (r) is not constant we use

the concept of abstract Sobolev spaces generated by powers of linear operators, [49],
Chapter 19.26. Namely, for a self-adjoint operator B in a Hilbert space H we consider
its power Bs , s ≥ 1 and equip its domain D (Bs) = HBs with the graph norm and scalar
product

‖u‖HBs
=
√

‖Bsu‖2 + ‖u‖2, (u, v)HBs
= (Bu,Bv)+ (u, v) . (3.45)
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We recall that for a linear operator B its graph G(B) is defined as the set of all pairs
{u,Bu} when u runs the domain D (B) of the operator B.

In view of (3.24) the norm equivalencies (3.24), (3.44) can be recast as

H̊s =
[
L̊2

][
∇̊×]s , H̊s × H̊s =

[
L̊2

2

][
i∇̊××]s . (3.46)

It is also evident, in view of (3.7) and (2.11), that

H̊s
M =

[
L̊2

2

]
M̊s
. (3.47)

Hence, to show the equality of H̊s × H̊s to H̊s
M , which is the statement of Lemma 3.4,

it is sufficient to verify that

[
L̊2

2

]
M̊s

=
[
L̊2

2

]
M̊s
. (3.48)

The following abstract results are developed to establish (3.48).
Let us recall the basic concepts related to closed operators. For any linear operator

B we consider, its domain D (B) is assumed to be dense in the Hilbert space H with the
norm ‖‖H = ‖‖ .A linear operator B is called closable, [28], Sect. III. 5.3, if and only
if

un ∈ D (B) , un → 0 and Bun → v imply v = 0. (3.49)

The closure B̄ of a closable operator B has the graph G
(
B̄
)

which is defined as the
closure G(B) of the graph G(B). For a closed operator B a set D is called its core if
the closure of the restriction B on D is the operator B itself.

To deal with powers, products and sums of unbounded operators we introduce the
following definitions.

Definition 3.5. Let B1, B2, . . . , Bn be linear densely defined operators acting in H. We
define the product B = B1B2 · · ·Bn as a linear operator B acting naturally as

Bu = B1 (B2 (. . . (Bnu))) for u ∈ D (B) , (3.50)

where its domain D (B) is defined as the set of u such that

u ∈ D (Bn) , Bnu ∈ D (Bn−1) , . . . , B2 (. . . (Bnu)) u ∈ D (B1) . (3.51)

If the domain D (B) is dense in H we call the product B densely defined.

Definition 3.6. Let B1, B2, . . . , Bn be densely defined linear operators. Then the sum
B = B1 + · · · + Bn acts naturally as

Bu = B1u+ · · · + Bnu, (3.52)

where the domain D (B) = D (B1) ∩ · · · ∩ D (Bn). If the domain D (B) is dense in H
we call the sum B densely defined.
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Clearly the most important parts of the above definitions are the domains of the
product and the sum, since the operators of interest are unbounded. One can easily ver-
ify that the above definitions are consistent and correct in the sense that the domains
of the product and the sum are independent of how we group operators when forming
the product and the sum. In particular, D (B1 (B2B3)) = D ((B1B2) B3) with a similar
equality holding for the sum.

To establish the identity of Hilbert spaces HB generated by different operators B we
introduce the following definition.

Definition 3.7. We call two linear closed operators B1 and B2 equivalent and write
B1 ∼ B2 if D (B1) = D (B2) and there exist positive constants γ−, γ+ 0 < γ− ≤ γ+,
such that for any u ∈ D (B2),

γ−
(
‖B2u‖2 + ‖u‖2

)
≤ ‖B1u‖2 + ‖u‖2 ≤ γ+

(
‖B2u‖2 + ‖u‖2

)
. (3.53)

If B1 and B2 are linear operators defined on a dense domain D, at least one of B1, B2 is
closable, and the inequalities (3.53) hold for any u ∈ D, then we write B1 ∼ B2 on D.

The following statement is useful for the verification of the equivalency of a two
linear operators.

Lemma 3.8. Let B1 and B2 be densely defined linear operators, and, in addition, B2 be
closable. Suppose that a set D ⊆ D (B1) ∩ D (B2) is a core of B̄2. Suppose also that
there exist positive numbers α± and β± such that for any u ∈ D,

α− ‖B2u‖2 − β− ‖u‖2 ≤ ‖B1u‖2 ≤ α+ ‖B2u‖2 + β+ ‖u‖2 . (3.54)

Then the following statements hold:

(i) the inequalities (3.53) and (3.54) are equivalent, and (3.54) implies (3.53) with
γ+ = max {α+, 1 + β+} and γ− = min {α−, β − β−} /β, where β = β++β−+1;

(ii) B1 is closable, B1 ∼ B2 on D , and B̄1 ∼ B̄2 including, in particular, D (B̄1
) =

D (B̄2
)
;

(iii) if we replace in the inequalities (3.53) and (3.54) B1 and B2 respectively with B̄1
and B̄2 these inequalities will hold for any u ∈ D (B̄1

)
;

(iv) if B1 ∼ B2 on D then both operators are closable and B̄1 ∼ B̄2;
(v) the relation B1 ∼ B2 between closed operators is an equivalency relation.

Proof. We begin with the statement (i). Indeed, (3.53) evidently implies (3.54). To show
the opposite implication we set β = β+ + β− + 1 and, using the right-hand side of the
inequality (3.54), obtain

‖B1u‖2 + ‖u‖2 ≤ ‖B2u‖2 + (1 + β+) ‖u‖2 ≤ γ+
(
‖B2u‖2 + ‖u‖2

)
, (3.55)

where γ+ = max {α+, 1 + β+}. Then using the left-hand side of the inequality (3.54)
we get

β
(
‖B1u‖2 + ‖u‖2

)
≥ ‖B1u‖2 + β ‖u‖2 ≥ α− ‖B2u‖2 + (β − β−) ‖u‖2 (3.56)

implying, in turn,

‖B1u‖2 + β ‖u‖2 ≥ γ−
(
‖B2u‖2 + ‖u‖2

)
, (3.57)
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where γ− = min {α−, β − β−} /β. This completes the proof of (i) and we may assume
from now on that (3.53) holds.

Let us consider the graphs G(B1|D) and G(B2|D) of the corresponding restric-
tions of the operators B1 and B2 to the set D. The inequalities (3.53) imply that for any
sequence un ∈ D we have

‖un − u‖HB1
→ 0 if and only if ‖un − u‖HB2

→ 0 (3.58)

and, in addition to that,

γ−
(
‖v2‖2 + ‖u‖2

)
≤ ‖v1‖2 + ‖u‖2 ≤ γ+

(
‖v2‖2 + ‖u‖2

)
, (3.59)

where v1 = lim
n→∞B1un, v2 = lim

n→∞B2un.

Notice now that since B2 is closed, then if u = 0 then, v2 = 0 and, in view of (3.59), we
may conclude that v1 = 0, implying that B1 is closable andG

(
B̄1
) = G(B1|D). Since,

according to the lemma conditions, D is a core of B2 we also haveG(B2) = G(B2|D).
Observe now that (3.58) implies: D (B̄1

) = D (B̄2
)
; the inequalities (3.54) hold for

any u ∈ D (B̄2
)
. Hence, in accordance with Definition 3.7, we have B1 ∼ B2 on D ,

B̄1 ∼ B̄2 and (ii) and (iii) are proven.
The proof of (iv) is based on the same arguments as the proofs of the statements

(i)–(iii). The statement (v) follows from (i)–(iv) completing the lemma’s proof. �
Definition 3.9. Suppose that B and C are closed and densely defined operators. We say
that C is subordinated to B, and write C ≺ B, if D (B) ⊆ D (C) and for every positive
ε < 1 there exist a positive βε such that for any u ∈ D (B),

‖Cu‖2 ≤ ε ‖Bu‖2 + βε ‖u‖2 . (3.60)

IfC andB are linear operators defined on a dense domain D and the inequalities (3.60)
hold for every positive ε < 1 and every u ∈ D, then we write C ≺ B on D.

To verify the subordination of two operators we will be using the following statement.

Lemma 3.10. Suppose that B and C are closable operators defined on a dense set D
and that the inequalities (3.60) hold for every positive ε < 1 and every u ∈ D. Then
C̄ ≺ B̄.

Proof. The proof follows immediately from Definition 3.9 and closability of B and C
on D. �

Now we prove a few technical statements.

Lemma 3.11. Suppose that operators B and C are closable on a dense set D, and that
C ≺ B on D. Then B + C is also closable on D and B + C ∼ B on D.

Proof. The condition C ≺ B on D implies for any u ∈ D,

‖Cu‖2 ≤ ε ‖Bu‖2 + βε ‖u‖2 . (3.61)

Observe now that for any two vectors v,w ∈ H the following elementary inequalities
hold:

3

4
‖v‖2 − 4 ‖w‖2 ≤ ‖v‖2 − 2 ‖v‖ ‖w‖ ≤ ‖v + w‖2 ≤ 2 ‖v‖2 + 2 ‖w‖2 . (3.62)
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Combing (3.61) with (3.62) we get
(

3

4
− 4ε

)
‖Bu‖2 − 4βε ‖u‖2 ≤ ‖Bu+ Cu‖2 ≤ (2 + ε) ‖Bu‖2 + βε ‖u‖2 , (3.63)

which together with Lemma 3.8 (i), (ii) imply thatB+C is closable on D andB+C ∼ B

completing the proof. �
Recall now the following interpolation inequalities relating the L2-norms of the

derivatives of different orders (see [15], Chapter IV, Sect. 7, Corollary 4 or [19], Sect. 7,
Theorem 7.27): for every ε > 0 there exists Cs (ε, d) such that for 0 ≤ s′ < s,

||u||Hs ≤ ε ||u||Hs + Cs (ε, d) ||u||H 0 , u ∈ Hs
(
R
d
)
. (3.64)

In our case of the fields and functions over the entire space R
d the inequality (3.64) can

be readily verified using (3.12), (3.13) together with the following elementary inequality,

|k|2s′ ≤ ε2 |k|2s + C2
s (ε) , 0 ≤ s′ < s, (3.65)

which holds for an appropriately chosen constant Cs (ε). Using in a similar way the
inequality (3.65) together with the standard spectral decomposition in place of the Fourier
transform, one shows the validity of the following natural generalization of (3.64).

Lemma 3.12. LetB be a self-adjoint operator and 1 ≤ s′ < s. Then D
(
Bs

′) ⊇ D (Bs)

and for every positive ε < 1 there exist a positive βs,ε such that

‖u‖2
H
Bs

′ ≤ ε ‖u‖2
HBs

+ βs,ε ‖u‖2
H , u ∈ D (Bs) and Bs

′ ≺ Bs. (3.66)

In addition to that, the restriction Bs
′ ∣∣∣D(Bs) is closable on D (Bs), its closure is exactly

Bs
′
, and

Bs
′ ≺ Bs

′′
on D (Bs) , 1 ≤ s′ ≤ s′′ < s. (3.67)

Theorem 3.13. Let s ≥ 1 be an integer, B be a self-adjoint operator and D = D (Bs).
Suppose that A is a bounded operator such that AD ⊂ D, and that Bs

′
A ∼ Bs

′
on D

for every 1 ≤ s′ ≤ s. Suppose also that 1 ≤ m ≤ s and s1, s2, . . . , sm ≥ 1 are integers
such that s1 + · · · + sm = s′ ≤ s. Then

B = (Bs1A) (Bs2A) · · · (BsmA) ∼ Bs
′

on D, (3.68)

including the fact that D (B) ⊃ D. In particular,

(BA)s
′ ∼ Bs

′
on D for every 1 ≤ s′ ≤ s. (3.69)

Proof. We will refer to the numbersm and s′ in the representation (3.68) for the operator
B respectively as its A-rank m and its power s′.

Let us look first at the domains of our operators. Since B is self-adjoint, we have

Bs
′D = Bs

′D (Bs) = D
(
Bs−s

′)
for any 1 ≤ s′ ≤ s. (3.70)
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Based on the given conditions Bs
′
A ∼ Bs

′
on D, AD ⊂ D and with the help of

Lemma 3.8 (ii) we may conclude that

Bs
′
AD ⊂ Bs

′D = D
(
Bs−s

′)
for every 1 ≤ s′ ≤ s. (3.71)

The relation (3.71) readily implies that for every operator B of the form (3.68) it is well
defined on D, i.e.

D (B) = D
(
Bs−s

′) ⊃ D (Bs) = D. (3.72)

We prove the main statement by the induction with respect to theA-rankm. Observe
first, that the conditions of the theorem evidently imply the validity of (3.68) form = 1.
Suppose now that (3.68) holds for 1 ≤ m < s′ ≤ s, i.e.

B1 = (Bs1A) (Bs2A) · · · (BsmA) ∼ Bs
′

on D, where s′ = s1 + ...+ sm ≤ s, (3.73)

and let us show that it is true then for m+ 1, i.e.

B = (Bs1A)B1 = (Bs1A) (Bs2A) · · · (Bsm+1A
) ∼ Bs

′′
on D, (3.74)

where s′′ = s′ + sm+1 = s1 + ...+ sm+1 ≤ s.

Using Lemma 3.8 (i), (3.72) and the validity of (3.68) form = 1 we obtain for anyu ∈ D,

α−
∥∥B′

1u
∥∥+ β− ‖B1u‖ ≤ ‖Bu‖ = ∥∥Bs1AB1u

∥∥
≤ α+

∥∥B′
1u
∥∥+ β+ ‖B1u‖ , where B′

1 = Bs1B1, (3.75)

and the constants α± and β± are, respectively, positive and real, depending only on B
and s. Notice now that B′

1 has the same A-rank m as the operator B1, and the power
s′′ = s′ + sm+1. Hence, in view of the induction hypothesis, the relation (3.73) applies
for the both B1 and B′

1. Using this fact, and once more Lemma 3.8 (i) and (3.75), we
get for any u ∈ D,

β ′
− ‖u‖ + α′

−
∥∥∥Bs′u

∥∥∥+ α′′
−
∥∥∥Bs′′u

∥∥∥ ≤ ‖Bu‖
≤ α′′

+
∥∥∥Bs′′u

∥∥∥+ α′
+
∥∥∥Bs′u

∥∥∥+ β ′
+ ‖u‖ , (3.76)

where the constants α′′± are positive and α′±, β ′± are real. From (3.76) and Lemma 3.12
we get for any u ∈ D,

β ′′′
− ‖u‖ + α′′′

−
∥∥∥Bs′′u∥∥∥ ≤ ‖Bu‖ ≤ α′′′

+
∥∥∥Bs′′u∥∥∥+ β ′′′

+ ‖u‖ (3.77)

for some positive α′′′± and real β ′′′− . Based on (3.77), Lemma 3.8 (i), (ii) we get the desired
relation (3.74) that completes the proof of the theorem. �

Now we are ready to prove Lemma 3.4.

Proof (Proof of Lemma 3.4). The statement of the lemma follows from (3.46), (3.47),
Lemma 3.3 and Theorem 3.13 where we set H = L̊2

2, B = i∇̊××
and A = �̊. �

Remark 3.14. Another way to prove Lemma 3.4 is by constructing a parametrix of the

Stokes-type operator

[∇×η ∇
∇ 0

]
using the ellipticity of the operator and methods of the

theory of pseudodifferential operators, for the exposition of the theory see, for example,
[40, 34]. The proof of Lemma 3.4 we gave above is more elementary.
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4. Analytic Operators and Series Expansions

4.1. Multilinear forms and polynomial operators. The nonlinear analysis of Maxwell
equations requires the use of appropriate Banach spaces of time dependent fields, as
well as multilinear and analytic functions in those spaces. It also requires an appropriate
version of the implicit function theorem. For the reader’s convenience we collect in this
section the known concepts and statements on the above-mentioned subjects needed for
our analysis.

Definition 4.1. Suppose that x1, x2, . . . , xn are vectors in a Banach space X. Let a
function F (x), x = (x1, x2, . . . , xn), be defined for all values of the variables x ∈ Xn
and take values inZ.This function is called a n-linear form if it is linear in each variable
separately. It is said to be bounded if the norm of F defined by

‖F‖X,Z = sup
‖x1‖X=...=‖xn‖X=1

‖F (x1, x2, . . . , xn)‖Z (4.1)

is finite. When the choice of the spaces X and Z is clear from the context, we simply
write ‖F‖.

Definition 4.2. A functionP (x) fromX toZ defined for all x ∈ X is called a polynomial
in x of degree n if for all a, h ∈ X and all complex α,

P (a + αh) =
n∑
ν=0

Pν (a, h) α
ν, (4.2)

where Pν (a, h) ∈ Z are independent of α. The degree is exactly n if Pn (a, h) is not
identically zero. P (x) is a homogeneous polynomial of degree n if it is homogeneous of
degree n,

f (αx) = αnf (x) (4.3)

and is a polynomial. A homogeneous polynomial is called bounded if its norm

‖f ‖∗ = sup
‖x‖X=1

{‖f (x)‖Z} (4.4)

is finite. For a given n-linear form Fn (x) = Fn (x1, x2, . . . , xn) we denote by Fn (xn)
a homogeneous of degree n polynomial from X to Z,

Fn
(
xn
) = Fn (x, x, . . . , x) . (4.5)

Usually we denote the multilinear operator fn (x) and the homogeneous polynomial
fn (x

n) obtained by the restriction to the diagonal x1 = x2 = . . . = xn by the same
letter fn. Obviously,

‖fn‖∗ ≤ ‖fn‖ . (4.6)

Definition 4.3. Let fm (xm) ,m = 2, 3, ... be a sequence of bounded m homogeneous
polynomials from X to Z that satisfy the estimate

‖fm‖∗ ≤ C∗f R−m
∗f ,m = 2, 3, .... (4.7)
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We say that a function f that is defined for ‖x‖X < R∗f by the series

f (x) =
∞∑
n=2

fn
(
xn
)

(4.8)

is in the analyticity classA∗
(
C∗f , R∗f ,X,Z

)
and write f ∈ A∗

(
C∗f , R∗f ,X,Z

)
.We

say that g is analytic inX if g = L+f , where L is a bounded linear operator inX and
f ∈ A∗

(
Cf ,Rf ,X,X

)
for some Cf ,Rf > 0.

If f ∈ A∗
(
C∗f , R∗f ,X,Z

)
and ‖x‖X < R∗f the series

∞∑
n=n0

∥∥fn (xn)∥∥Z (4.9)

obviously converges, and, consequently, the series (4.8) converges in the Banach space
Z. In addition to that we have the inequality

‖f (x)‖Z ≤ C∗f
∞∑
n=n0

‖x‖nX R−n
∗f ≤ C∗f

‖x‖n0
X R

−n0
∗f

1 − ‖x‖X R−1
∗f
. (4.10)

Definition 4.4. If fm (x) ,m = 2, 3, ..., is a sequence of bounded m-linear operators
from Xm to Z and

‖fm‖ ≤ CfR
−m
f ,m = 2, 3...., (4.11)

we say that a function f defined by the series (4.8) for ‖x‖X < Rf belongs to the
analyticity class A

(
Cf ,Rf ,X,Z

)
and write f ∈ A (Cf ,Rf ,X,Z) .

When it does not lead to confusion, we write A∗
(
C∗f , R∗f

)
, A
(
Cf ,Rf

)
instead of

A∗
(
C∗f , R∗f ,X,Z

)
, A
(
Cf ,Rf ,X,Z

)
.

Note that obviouslyA
(
Cf ,Rf ,X,Z

) ⊂ A∗
(
Cf ,Rf ,X,Z

)
. We often need to find a

multilinear operator generating a given polynomial operator. Since different multilinear
operatorsGm (x1, . . . , xn)may result in the same polynomial operatorGm (x, . . . , x) =
Gm (x

m), we assume the multilinear operator to be symmetric. It is called the polar form
G̃m (x1, x2, . . . , xn) ofGm (xm). The existence of the polar form and an estimate of its
norm is given by the following proposition (see [26], Sect. 26.2, [14], Sect. 1.1, 1.3 for
details).

Proposition 4.5. For any homogeneous polynomial Pn (x) of degree n there is a unique
symmetric n-linear form P̃n (x1, x2, . . . , xn), called the polar form of Pn (x), such that
Pn (x) = P̃n (x, x, . . . , x). It is defined by the following polarization formula:

P̃n (x1, x2, . . . , xn) = 1

2nn!

∑
ξj=±1

Pn


 n∑
j=1

ξj xj


 . (4.12)

In addition to that, the following estimate holds:

‖Pn‖∗ ≤
∥∥∥P̃n

∥∥∥ ≤ nn

n!
‖Pn‖∗ . (4.13)
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Notice that using an expansion for the logarithm of the Gamma-function, [43],
Sect. 12.33, we get for an integer n ≥ 1,

nn

n!
≤ nn

(n+ 1)n+1/2 e−n−1
√

2π
≤ nn√

n+ 1nne−n−1
√

2π
= e√

2π (n+ 1)
en (4.14)

which, in turn, implies the inequality∥∥∥P̃n
∥∥∥ ≤ en ‖Pn‖∗ . (4.15)

Corollary 4.6. If f ∈ A∗
(
C∗f , R∗f ,X,X

)
then the polynomial operator series (4.8)

can be written in the form

f (x) =
∞∑

m=n0

f̃m
(
xm
)
, (4.16)

where f̃m are m-linear symmetric operators and f ∈ A (C∗f , R∗f /e,X,X
)
.

Let us consider now analytic functions of two vector variables (x, z) ∈ X × X. We

define the norm on X × X as follows: ‖(x, z)‖X×X = ‖x‖X + ‖z‖X. Let Fm
(−−→
(x, z)

)
,

m = 1, 2..., be a sequence of bounded m-linear operators from (X ×X)m to X, and
assume that F (x, z) defined by (4.8) belongs to A (CF ,RF ,X ×X,X). The formula
(4.8) for an analytic operator of two vector variables takes the form

F (x, z) =
∞∑
m=2

Fm
[
(x, z)m

]
, x ∈ X, z ∈ X. (4.17)

The series converges if ‖(x, z)‖X×X < RF . When ‖(x, z)‖X×X ≤ r < RF the conver-
gence is uniform. Using the multi-linearity ofFm and splitting (xi, zi) = (xi, 0)+(0, zi),
the m- linear operator on (X ×X)m can be rewritten in the form

Fm

(−−→
(x, z)

)
= Fm ((x1, z1) , . . . , (xn, zn))

=
∑
δ1,...δm

F ((δ1x1, (1 − δ1) z1) , . . . , (δmxm, (1 − δm) zm)) , δi ∈ {0, 1} .

(4.18)

This sum contains 2m terms. Collecting the terms of the homogeneity s in x (andm− s

in z ) we write

Fm

(−−→
(x, z)

)
=

m∑
s=0

Fms (x; z) , (4.19)

where Fms is s-linear in x and m− s-linear in z, and, in particular,

Fms (tx; rz) = t srm−sFms (x; z) . (4.20)

Note that

Fm
[
(x, z)m

] =
m∑
s=0

Fms
(
xs; zm−s) . (4.21)
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We renumerate the variables for every term in (4.18) so that Fms (x; z) depends only on
x1, ..., xs and z1, ..., zm−s . Clearly, it does not change (4.21) and the norm of every term
in (4.18). Since the operator Fms involves

(
s
m

)
terms from (4.18) (here

(
s
m

) = m!
s!(m−s)! is

the binomial coefficient), its norm can be estimated as follows:

‖Fms (x; z)‖X ≤
(
s

m

)
‖Fm‖

s∏
i=1

‖xi‖X
m−s∏
i=1

‖zi‖X . (4.22)

Hence, we can recast (4.17) as

F (x, z) =
∞∑
m=1

m∑
s=0

Fms
(
xs; zm−s) . (4.23)

Lemma 4.7. Let F ∈ A (CF ,RF ,X ×X,X). Then the series (4.23) converges when
‖x‖X + ‖z‖X < RF and the sums (4.23) and (4.17) coincide.

Proof. By (4.22) and (4.11) we get

m∑
s=0

∥∥Fms (xs; zm−s)∥∥
X

≤ CF

m∑
s=0

m!

s! (m− s)!
R−m
F ‖x‖sX ‖z‖m−s

X

= CFR
−m
F (‖x‖X + ‖z‖X)m

and, hence, the series converges. Since (4.21) holds for every m, the sums (4.23) and
(4.17) coincide. �

4.2. Implicit Function Theorem. Let us consider the equation

z = Lx + F (x, z) , (4.24)

where L is a bounded linear operator and F (x, z) is a nonlinear operator such that
F (0, 0) = 0. We single out the linear part since the norm which estimates the linear
term is somewhat different. Sometimes though it is convenient to include Lx into F
replacing it with a single term F1x. We seek the solution z (x) to Eq. (4.24) for small
‖x‖. The following implicit function theorem holds.

Theorem 4.8. Let F ∈ A (CF ,RF ,X ×X,X). Then there exists a solution z = Lx +
G(x) of (4.24) with G ∈ A∗ (C∗G,R∗G,X,X), G ∈ A (C∗G,R∗G/e,X,X) , where

R∗G =
RF + 2CF − 2

√
RFCF + C2

F

1 + γL
, γL = ‖L‖ , (4.25)

C∗G = RF

2 (RF + CF )
(RF + (1 + γL)R∗G)− R∗G

≤ 1

2
(RF + γLR∗G − R∗G) . (4.26)

In particular,

G(x) =
∞∑
m=2

Gm
(
xm
)

for ‖x‖X < R∗G, (4.27)
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and its norm satisfies

‖G(x)‖X ≤ C∗G
‖x‖2

X R
−2
∗G

1 − ‖x‖X R−1
∗G
. (4.28)

The polynomial operators Gm (xm) satisfy the following recursive relations: G1 = L,

Gm
(
xm
) =

m∑
j=1

j∑
s=0

∑
i1+···+ij−s=m−s

Fjs

(
xs;Gi1

(
xi1
)
, . . . ,Gij−s

(
xij−s

))
,m ≥ 2,

(4.29)

where F11 = L, F10 = 0, Fjs are the same as in (4.23). The operator G(x) is unique
in the classes A∗ (C,R,X,X), C > 0, R > 0.

Proof. It is convenient to denote the linear operator L in (4.24) by F1, i.e. L = F1. Note
that according to (4.23) F1 = F11 and F10 = 0 since Lx does not depend on z. Observe
also that the recursive relations (4.29) are obtained by formally collecting terms of the
homogeneity m in x from Eq. (4.24), where z and F are given respectively by (4.27)
and (4.23). In other words they are equivalent to the formal equality

∞∑
m=1

Gm
(
xm
) =

∞∑
j=1

j∑
s=0

Fjs


xs;

[ ∞∑
i=0

Gi

(
xi
)]j−s . (4.30)

Let us study now the issue of convergence of the series (4.30). First we notice that
G1 = L since (4.30) F11 = L and F10 = 0. To estimate ‖Gm‖∗ defined by (4.4) let us
estimate ‖Gm (xm)‖X for ‖x‖X = 1. Evidently

‖G1 (x)‖X = ‖Lx‖X ≤ γL, γL = ‖L‖ . (4.31)

For m > 1 using (4.22) we get

∥∥Gm (xm)∥∥X ≤
m∑
j=2

j∑
s=0

∑
i1+···+ij−s=m−s

∥∥∥Fjs
(
xs;Gi1

(
xi1
)
, . . . ,Gij−s

(
xij−s

))∥∥∥
X

≤ ‖x‖mX
m∑
j=2

j∑
s=0

∑
i1+···+ij−s=m−s

CFR
−j
F

(
s
j

) j−s∏
l=1

∥∥Gil∥∥∗ .

Hence, we have the following recursive estimate:

‖Gm‖∗ ≤
m∑
j=2

j∑
s=0

∑
i1+···+ij−s=m−s

CFR
−j
F

(
s
j

) j−s∏
l=1

∥∥Gil∥∥∗ , m = 2, 3, . . . . (4.32)

Let us introduce a sequence of majorants gm by

g1 = γ, gm =
m∑
j=2

j∑
s=0

∑
i1+···+ij−s=m−s

CFR
−j
F

(
s
j

) j−s∏
l=1

gil , m ≥ 2. (4.33)
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Obviously,

‖Gm‖∗ ≤ gm, m = 1, 2, ... . (4.34)

Then we introduce an auxiliary function

Z (r) =
∞∑
m=1

gmr
m. (4.35)

Note that (4.33) can be obtained by equating mth powers of r from the equation

∞∑
m=1

gmr
m = γ r +

∞∑
j=2

j∑
s=0

CFR
−j
F

(
s
j

)
rs

[ ∞∑
i=1

gir
i

]j−s
. (4.36)

The right-hand side of (4.36) equals

γ r +
∞∑
j=2

CFR
−j
F

[
r +

∞∑
i=1

gir
i

]j
= γ r + CF

[
((r + Z (r)) /RF )

2

1 − (r + Z (r)) /RF

]
. (4.37)

Hence, Eq. (4.36) is equivalent to the equation for Z (r) given by (4.35)

Z (r) = γ r + CF

[
((r + Z (r)) /RF )

2

1 − (r + Z (r)) /RF

]
. (4.38)

The numbers gm then are the Maclaurin coefficients of the solution of this algebraic
equation. The estimates of gm are provided below in the following Lemma 4.9 where we
set C = CF , R = RF , C2 = C∗G, r0 = R∗G. These estimates and (4.34) imply (4.25)
and (4.26). Hence G ∈ A∗ (C∗G,R∗G,X,X). Using Corollary 4.6 we obtain also that
G ∈ A (C∗G,R∗G/e,X,X).

The sums inm in the left-hand and right-hand sides of (4.29), (4.30) converge, yield-
ingG(x) = Lx+F (x,G (x)) and, hence,G(x) is a solution of (4.24). From (4.27) and
(4.10) we obtain that for ||x||X < R∗G (4.28) holds. The uniqueness of G(x) follows
from the fact that if G ∈ A∗ (C,R,X,X) with C,R > 0 is a solution of the equation
G(x) = Lx + F (x,G (x)) then it must satisfy the recursive relations (4.29). �
Lemma 4.9. The analytic solution Z (r) of the equation

Z (r) = γ r + C

[
(r + Z (r))2

R (R − r − Z (r))

]
, Z (0) = 0, (4.39)

with constants C,R > 0 and γ ≥ 0, expands into the Maclaurin series
∑
n gnr

n with
gn ≥ 0 and the radius of convergence

r0 = R + 2C − 2
√
CR + C2

γ + 1
. (4.40)

The coefficients gn satisfy the inequalities

|gn| ≤ C2r
−n
0 , C2 = R (R + r0 (1 + γ ))

2 (R + C)
− r0, n = 1, 2, . . . . (4.41)
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Proof. Eq. (4.39) is reducible to a quadratic equation

R (R − r − Z) (Z + r − (1 + γ ) r) = C (r + Z)2 (4.42)

that is equivalent to

(
z− γ ′r

)
R (R − z) = Cz2, γ ′ = 1 + γ, z = r + Z. (4.43)

The solution Z (r) that satisfies (4.39) and Z (0) = 0 corresponds to

z (r) = R

2 (R + C)

(
R + γ ′r −

√
R2 − 2γ ′rR + (γ ′)2r2 − 4γ ′rC

)
. (4.44)

By the recursive relations (4.33) all the Maclaurin coefficients gn of Z (r) are non-neg-
ative, gn ≥ 0. The same is true for z (r) = r + Z (r). Notice that the functions Z (r)
and z (r) have the same branching points. The branching points of z (r) are given by the
discriminant equation

R2 − 2γ ′rR + (γ ′)2r2 − 4γ ′rC = 0. (4.45)

The branching point r0 with the minimal modulus is

r0 = R + 2C − 2
√
CR + C2

γ ′ = R2

γ ′
(
R + 2C + 2

√
CR + C2

) (4.46)

that yields (4.40). In as much as the functionZ (r) is analytic for |r| < r0 and is bounded
for |r| ≤ r , using the Cauchy formula we obtain

|gm| ≤ max
|r|=r0

|Z (r)| r−m0 . (4.47)

Since all gn ≥ 0 the maximum of |Z (r)| over |r| = r ′ < r0 is attained at a real positive
r = r ′. Obviously, z (r) given by (4.44) for |r| ≤ r0 is continuous and we get

max
|r|=r0

|Z (r)| = Z (r0) = z (r0)− r0 = R2

2 (R + C)
+ r0Rγ

′

2 (R + C)
− r0. (4.48)

�
According to Theorem 4.8 a solution of (4.24) of the form z = G(x), G ∈

A∗ (C,R,X,X) is unique, but more general solutions may be not unique. Though,
the next lemma shows that solutions z are unique if ‖z‖X + ‖x‖X is small enough.

Lemma 4.10. Let F ∈ A (CF ,RF ,X ×X,X) and z1, z2 be two solutions to Eq. (4.24)
with ‖z1‖X + ‖x‖X ≤ r , ‖z2‖X + ‖x‖X ≤ r , r < RF . If

CF

RF

[
1

(1 − r/RF )
2 − 1

]
< 1, (4.49)

then z2 = z1.
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Proof. Evidently,

‖z1 − z2‖ = ‖F (x, z1)− F (x, z2)‖ . (4.50)

Notice then that the following identity holds for an nth order multilinear form Fn:

Fn
(
(x, z1)

n
)− Fn

(
(x, z2)

n
) = Fn ((x, z1) , ..., (x, z1))− Fn ((x, z2) , .., (x, z2))

= Fn ((x, z1) , (x, z1) , ..., (x, z1))− Fn ((x, z2) , (x, z1) , ..., (x, z1))+ ...

+Fn ((x, z2) , ..., (x, z2) , (x, z1))− Fn ((x, z2) , ..., (x, z2))

= Fn ((x, z1 − z2) , (x, z1) , ..., (x, z1))+ ...

+Fn ((x, z2) , ..., (x, z2) , (x, z1 − z2)) , (4.51)

implying
∥∥Fn ((x, z1)

n
)− Fn

(
(x, z2)

n
)∥∥
X

≤ n ‖Fn‖ rn−1 ‖z1 − z2‖X . (4.52)

Summing up with respect to n the terms in the previous inequality we get

‖F (x, z1)− F (x, z2)‖X
≤

∞∑
n=2

nrn−1CFR
−n
F = CF

RF

[
1

(1 − r/RF )
2 − 1

]
‖z1 − z2‖X . (4.53)

Hence ‖z1 − z2‖X ≤ c ‖z1 − z2‖X with c < 1 implying ‖z1 − z2‖X = 0. �
Now let us consider the case when the analytic F (x, z) is of order n0 > 2 at z = 0,

namely

F2 (x, z) = ... = Fn0−1 (x, z) = 0, n0 > 2. (4.54)

It is convenient to rescale the variables

z = αz′, x = αx′, 0 < α ≤ 1, (4.55)

and to consider the following corollary of Theorem 4.8.

Corollary 4.11. Assume that the conditions of Theorem 4.8 are fulfilled, and, in addition
to that, (4.54) holds. Then for all α ∈ [0, 1], the operator G belongs to
A∗
(
C′

∗G′ , αR∗G′ , X ×X,X
)
, where

R∗G′ =
RF + 2αn0−1CF − 2

√
RFαn0−1CF + α2n0−2C2

F

1 + γL
, (4.56)

C′
∗G′ = 1

2
(RF + γLR∗G′ − R∗G′) . (4.57)

Proof. First, we rewrite Eq. (4.24) in the form

z′ = Lx′ + α−1F
(
αx′, αz′

)
, (4.58)

and introduce

F ′ (z′) = α−1F
(
αz′
)
. (4.59)
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Since

α−1Fn
((
αz′
)n) = αn−1Fn

((
z′
)n)

, n ≥ n0, (4.60)

we conclude that

if F ∈ A (CF ,RF ,X ×X,X) then F ′ ∈ A
(
αn0−1CF ,RF ,X ×X,X

)
. (4.61)

Note that after rescaling (4.55) the solution z = G(x) of (4.24) takes the form z′ =
α−1G

(
αx′) = G′ (x′). Since (4.58) has the form of (4.24), formula (4.25) of Theorem

4.8 gives an estimate (4.56) of the radiusR∗G′ of convergence of the power expansion of
G′ (x′). Further,G(x) = αG′ (α−1x

)
and we obtain thatG ∈ A∗ (αC∗G′ , αR∗G′ , X,X),

where C∗G′ is defined by (4.26) with CF replaced by αn0−1CF and, consequently,
C∗G′ ≤ C′

∗G′ where C′
∗G′ is defined in (4.57). �

Let us consider a slightly more general case than Eq. (4.24), namely, the equation

b1z = Lx + F (x, z) , (4.62)

where b1is a linear operator and F (x, z) is as in (4.24). When b1 has a bounded inverse
b−1

1 (this is the standard condition of the implicit function theorem), we reduce (4.62)
to (4.24). Namely, we rewrite (4.62) in the form

z = b−1
1 Lx + b−1

1 F (x, z) . (4.63)

This equation is of form (4.24) with a modified right-hand side, the modified multilinear
operators Fbm are

Fbm = b−1
1 Fm (4.64)

and the constants RF , CF and γL in (4.25), (4.26) are replaced respectively by

RbF = RF ,CbF =
∥∥∥b−1

1

∥∥∥CF , γb =
∥∥∥b−1

1

∥∥∥ γL. (4.65)

Consider now the composition G = F (S1z+ S (z)) of two analytic operators.
It is well-known that the composition is analytic (see [26]). In the following theorem

we give an explicit estimate of the radius of convergence of G.

Theorem 4.12. Let F ∈ A (CF ,RF ,X,X), S ∈ A∗ (CS, RS,X,X), S1 be a linear
bounded operator in X and ‖S1‖ ≤ CSR

−1
S . Let

Gm
(
xm
) =

m∑
j=1

∑
i1+···+ij=m

Fj

(
Si1

(
xi1
)
, . . . , Sij−s

(
xij
))
, G (x) =

∞∑
m=1

Gm
(
xm
)
.

(4.66)

Then G ∈ A∗ (CG,RG,X,X), G ∈ A (CG,RG/e,X,X), where

RG = RFRS

RF + CS
,CG = CSCF

RF + CS
. (4.67)

The operator G(x) coincides with F (S1x + S (x)) for ‖x‖X < RG.
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Proof. The formula (4.66) is obtained by collecting terms of the homogeneity m in the
identity G(x) = F (S (x)+ S1x). Let us estimate Gm (xm) with ‖x‖X = 1:

∥∥Gm (xm)∥∥X ≤
m∑
j=2

∑
i1+···+ij=m

∥∥∥Fj
(
Si1

(
xi1
)
, . . . , Sij−s

(
xij
))∥∥∥

X

≤ CF

m∑
j=0

R
−j
F C

j
S

∑
i1+···+ij=m

R
−(i1+···+ij )
S . (4.68)

For further estimation we introduce majorants

gm = CF

m∑
j=0

R
−j
F C

j
S

∑
i1+···+ij=m

R
−(i1+···+ij )
S . (4.69)

One can see that the right-hand side of the equality (4.69) coincides with the coefficient
at λm of the formal series obtained after substitution of the number series

z (λ) = CS

∞∑
i=1

R−i
S λ

i (4.70)

into the series

f (z) = CF

m∑
j=0

R
−j
F zj . (4.71)

Both series determine respectively the analytic functions

z (λ) = CSR
−1
S

λ

1 − λR−1
S

, f (z) = CF

[
1

1 − zR−1
F

]
. (4.72)

Therefore sm coincide with the Maclaurin coefficients of f (z (λ)) which is a rational
function of λ :

f (z (λ)) = CFRF

[
RS − λ

RFRS − (RF + CS) λ

]

= CFRF

RF + CS
+ CFCS

RF + CS

1

1 − λ (RF + CS) / (RFRS)
.

The series expansion of f (z (λ)) yields gm = CGR
−m
G , m ≥ 1, where CG and RG are

defined by (4.67). Hence

‖Gm‖∗ ≤ gm ≤ CGR
−m
G , (4.73)

and G ∈ A∗ (CG,RG,X,X). Applying Corollary 4.6 we obtain that G belongs to
A (CG,RG/e,X,X). �
Remark 4.13. The condition ‖S1‖ ≤ CSR

−1
S of the previous theorem can be always satis-

fied by decreasing RS since A∗ (CS, RS,X,X) ⊂ A∗
(
CS,R

′
S,X,X

)
when R′

S ≤ RS .
One can treat a general case ‖S1‖ = γS directly as in the proof of Theorem 4.12 using a
more general majorant z (λ) and still can get explicit formulas for RG and CG, but they
are more involved. For example, the expression for the radius of convergence becomes

RG = 2RSRF

RF + γSRS +
√
(RF + γSRS)

2 + 4RF (CS − γSRS)

. (4.74)
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4.3. Further properties of analytic operators. The operators (functions) in Banach
spaces that we construct in this paper are in the form of convergent series of polynomials.
We consider and study power series primarily at zero, that correspond to the state of com-
plete rest for the medium. Such and more general operators are the subject of the theory
of analytic operators (functions). Many properties of scalar analytic functions of a com-
plex variable can be extended to such vector-to-vector functions. In particular, they are
continuous, complex differentiable. Among other properties, complex analyticity and
boundedness imply analyticity, the Cauchy formula is valid, Taylor series converge in a
neighborhood of a point of analyticity, etc. The reader can find details on the properties
of abstract analytic functions in [26], Sects. 3.10–3.19 and Sects. 26.1–26.7. All these
results are applicable to the analytic operators we construct in this paper.

5. Abstract Causal Power Series

This section provides a systematic analysis of an abstract version of power series similar
to (1.12), (1.13) representing the nonlinear polarization. We will refer to power series
similar to (1.12), (1.13) and the functions they define as respectively causal series and
causal polynomial operators. In the literature (see, for instance, [21], Chapter IV, and
[23], Chapters I and II) the equations involving similar operators are called retarded or
Volterra.

Let us introduce the following notations that are used in the definition of causal
operators:

R
n
+ = {−→τ ∈ R

n : τ1, . . . , τn ≥ 0
}
, (5.1)

−→τ = (τ1, . . . , τn) ,
−→
1 = (1, . . . , 1) ,

−→E = (E1, . . . ,En) . (5.2)

Let Y be a Banach space. We consider trajectories x = x (t), −∞ < t ≤ T , which
are continuous Y -valued functions of t . Let us recall basic definitions of continuity and
strong continuity.

A Y -valued function x (t) defined on an open interval I ⊆ R is called continuous
on I if for any t0 ∈ I we have limt→t0 ‖x (t)− x (t0)‖ = 0. Similar definitions of the
continuity and the differentiability are assumed for Y -valued functions x (t1, . . . , tn) of
n real variables.

If f (θ) is a bounded n-linear form in a Banach space Y that depends on a parameter
θ from a domain � in R

m, it is called strongly continuous at a point θ0 if f (θ) (x) →
f (θ0) (x) as θ → θ0 for any x ∈ Yn. The differentiability and the partial derivatives
in the strong sense are defined in a similar way. Note that when we say that an operator
f (θ) depends on θ continuously we understand continuous dependence in the operator
norm topology (not in the strong sense).

In most applications considered in this paper we have vector functions x (t), −∞ <

t ≤ T that satisfy the following rest condition:

x (t) = 0, t ≤ 0, (5.3)

and, in this case, it is sufficient to consider the restriction x (t) for t ∈ [0, T ]. It is still
convenient though to keep (5.3) for simplicity in writing integrals such as (1.13) and
their abstract counterparts.

For a given Banach space Y and a positive time T we introduce the Banach space
CTY = C ([−∞, T ] ;Y ) of bounded continuous Y -valued functions x (t), −∞ < t ≤ T ,
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with the norm defined by (2.6) and the Banach subspace CT0,Y = C0 ([−∞, T ] ;Y ) ⊂ CTY
of functions x (t) satisfying the rest condition (5.3). In our problems the Banach space
Y is usually either the Sobolev spaceHs or the Hilbert space Hs

m defined in terms of the
Maxwell operator m. An electromagnetic field at any fixed time is an element of Hs

m.
A trajectory x (t), −∞ < t ≤ T , then describes the field evolution up to the time T .

Let us introduce strictly causal n-linear operators pn that act on x ∈ (CTY )n, and take
values in CTY . They are abstract versions of the nonlinear polarization operators (1.13):

pn (x) (t) =
∫ t

−∞
· · ·
∫ t

−∞
pn [t − t1, . . . , t − tn; x1 (t1) , . . . , xn (tn)] dt1 · · · dtn ,

(5.4)

where pn [τ1, . . . , τn; z] are Y -valued bounded n-linear forms of

z = (z1, . . . , zn) ∈ Yn (5.5)

that continuously depend on (τ1, . . . , τn) = τ ∈ R
n+. We refer topn as the density forms,

density operators, or just the densities. Evidently, a polynomial form pn corresponding
to (5.4) is given by

pn (x) (t) = pn
(
xn
)
(t)

=
∫

R
n+
pn [τ1, . . . , τn; x (t − τ1) , . . . , x (t − τn)] dτ1 · · · dτn. (5.6)

Note that the integral operator (1.14) involves integration over faces on the boundary
∂Rn+ of the generalized n -dimensional octant R

n+. Compositions of such operators could
involve the integration over more general faces and the corresponding presentation of
the operators takes a more general form. To describe this more general form we consider
all the faces of all dimensions on the boundary ∂Rn+. Namely, let

sign (τ ) =
{

1 if τ > 0
0 if τ = 0 , (5.7)

and let us introduce for ν = 0, 1, ..., n the following ν-dimensional manifold:

∂νRn+ =

τ1 ≥ 0, . . . , τn ≥ 0 :

n∑
j=1

sign
(
τj
) = ν


 (5.8)

with the Lebesgue measure dντ on it. The manifold ∂νRn+ is a union of rectilinear faces
f (generalized octants ) of dimension ν

f (j1, ..., jν) = {τ ∈ R
n
+ : τj1 > 0, ..., τjν > 0, τj = 0, j 	= j1, ..., jν

}
, (5.9)

f (j1, ..., jν) ⊂ R
n (j1, ..., jν) = {τ ∈ R

n : τj = 0, j 	= j1, ..., jν
}
. (5.10)

Notice that

∂nRn+ = R
n
+ − ∂Rn+. (5.11)
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Using the notations (5.1), (5.2), (5.8) we introduce for 0 ≤ ν ≤ n the following, more
general multilinear forms

pn,ν (x) (t) =
∫
∂νRn+

pn,ν
[−→τ ; x1 (t − τ1) , . . . , xn (t − τn)

]
dντ

=
∑

f⊂∂νRn+

∫
f

pn,ν,f
[−→τ ; x1 (t − τ1) , . . . , xn (t − τn)

]
dντ, (5.12)

where the densitiespn,ν
[−→τ ; −→z ] aren-linear forms in −→z ∈ Yn continuously depending

on τ1, . . . , τn ∈ f ⊂ R
n+, pn,ν,f is a restriction of pn,ν to a face f ⊂ ∂νRn+. These

operators involve the integration over the faces ∂νRn+, an example of such a form occurs
in (1.14). The corresponding polynomial form is given by

pn,ν (x) (t) = pn,ν (x, . . . , x) (t) =
∫
∂νRn+

pn,ν

[−→τ ; x
(
t
−→
1 − −→τ

)]
dντ. (5.13)

We introduce now forms pn involving the integration over faces of all dimensions

pn (x1, . . . , xn) =
n∑
ν=0

pn,ν (x1, . . . , xn) , (5.14)

and the corresponding polynomials

pn (x) (t) = pn (x, . . . , x) (t) =
n∑
ν=0

∫
∂νRn+

pn,ν

[−→τ ; x
(
t
−→
1 − −→τ

)]
dντ. (5.15)

The form (5.15) can be recast as

pn (x) (t) =
n∑
ν=0

∫
t
−→1 −∂νRn+

pn,ν

[
t
−→
1 − −→τ ; x (−→τ )] dντ, (5.16)

which is useful when we differentiate it with respect to time.
It is instructive to look at the simplest case of a general quadratic causal polynomial

p2 (x) (t) = p2,0 (x (t) , x (t))+
∫ t

0
p2,1,f1 [t − τ1, t; x (τ1) , x (t)] dτ1

+
∫ t

0
p2,1,f2 [t, t − τ2; x (t) , x (τ2)] dτ2

+
∫ t

0

∫ t

0
p2,2 [t − τ1, t − τ2; x (τ1) , x (τ2)] dτ1dτ2. (5.17)

In this case ∂νRn+ is a quadrant when ν = 2, and the faces of the boundary consist of
the union of two rays f1, f2 with ν = 1 and one point (the origin) with ν = 0. Notice
that the first three terms in (5.17) depend explicitly on x (t) at the instant t whereas the
fourth term does not, it is strictly causal. The significance of that becomes clear when
we differentiate p2 with respect to time. Indeed, the time derivative of the first two terms
involves the time derivative of x (t)whereas the double integral term does not. Therefore,
the double integral term (strictly causal) provides a priori time smoothness of p2,2 (x) (t).
Notice that the classical optics representation for the polarization (1.12), (1.13) involves
only such integrals! For this reason we single out as a special class the causal series of
the form (5.4) which involve only volume (the highest possible dimension) integrations.
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Definition 5.1. We call causal the forms and polynomials defined by (5.4), (5.6), (5.13),
(5.14) and (5.15) with the densities pn,ν

[−→τ ; −→z ] , ν = 0, 1, ...n, that (i) are bounded
n-linear forms in −→z ∈ Yn, (ii) continuously depend on −→τ from every rectilinear face
of ∂νRn+. The series, forms and polynomials that include only volume integrals as in
(5.4) will be called strictly causal. We extend the forms pn,ν

[−→τ ; ·] for −→τ ∈ R
n by

assigning them zero values outside ∂νRn+, i.e. we set

pn,ν [τ1, . . . , τn; z1, . . . , zn] = 0 if (τ1, . . . , τn) /∈ ∂νRn+. (5.18)

We introduce the norm of a density pn,ν

∥∥pn,ν∥∥ = ∥∥pn,ν∥∥Y,Y =
∫
∂νRn+

∥∥pn,ν [−→τ ; ·]∥∥
Y,Y

dντ, (5.19)

where for every fixed −→τ the norm
∥∥pn,ν [−→τ ; ·]∥∥

Y,Y
is given by (4.1); we assume that∥∥pn,ν [−→τ ; ·]∥∥

Y,Y
is bounded uniformly in −→τ and we assume that for causal forms the

norm (5.19) is finite:

∥∥pn,ν∥∥ = ∥∥pn,ν∥∥Y,Y =
∫
∂νRn+

∥∥pn,ν [−→τ ; ·]∥∥ dν−→τ < ∞. (5.20)

Notice that the continuity together with (5.20) are sufficient for the Bochner
integrability of forms with respect to −→τ (see [26], Sects. 3.1–3.93, or [45], Chapter IV).

Note that when (5.18) is fulfilled, the integration in (5.12) over a face f of ∂νRn+ can
be replaced by the integration over a subspace R

ν
f that contains f and integrals in (5.12)

after a renumeration of the variables τ take the form

pn,ν,f (x1, . . . , xn) (t)

=
∫

R
ν
f

pn,ν,f

[
τ1, ..., τν, 0, ..., 0; x1 (t − τ1) , . . . , xν (t − τν) , xν+1 (t) ,

. . . , xn (t)
]
dτν (5.21)

=
∫

R
ν
f

pn,ν,f

[
t
−→
1 f − −→τ ; If x

(−→τ )+ (I − If
)
x (t)

]
dτν, (5.22)

where If denotes the projection in R
n onto the subspace that spans f .

Lemma 5.2. Let (5.20) hold. Then the operator pn,ν is bounded from
(CTY )n into CTY

for every T ≥ 0 and the norm of this operator defined by (4.1) admits the estimate
∥∥pn,ν∥∥CTY ,CTY ≤ ∥∥pn,ν∥∥Y,Y . (5.23)

The polynomial operator pn,ν (x
n) leaves CT0,Y invariant, i.e. pn,ν

(
CT0,Y

)
⊂ CT0,Y .

Proof. Note that ∂νRn+ consists of
(
ν
n

)
different faces f for which n − ν variables τj

equal zero, and, hence, the integral (5.12) splits into the sum of
(
ν
n

)
integrals pn,ν,f over

the faces. We estimate first the integral of pn,ν (x1, . . . , xn) (t) over one of the faces f .
Without loss of generality we assume that for this face τν+1 = ... = τn = 0 and, hence,
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pn,ν,f (x1, . . . , xn) (t) =
∫ ∞

0
...

∫ ∞

0
pn,ν,f

[
τ1, ..., τν, 0, ..., 0; x1 (t − τ1) ,

. . . , xn (t − τν)
]
dτ1dτν, (5.24)

where pn,ν,f is the density restricted to the face f . According to (2.6),
∥∥xj (t − τ)

∥∥
Y

≤ ∥∥xj∥∥CTY for t ≤ T , τ ≥ 0, (5.25)

and, hence, we have for t ≤ T ,∥∥pn,ν,f (x1, . . . , xn) (t)
∥∥
Y

≤
∫ ∞

0
...

∫ ∞

0

∥∥pn,ν,f [τ1, ..., τν, 0, ..., 0; x1 (t − τ1) , . . . , xn (t − τν)]
∥∥
Y
dτ1...dτν

≤
∫ ∞

0
...

∫ ∞

0

∥∥pn,ν,f (τ1, ..., τν, 0, ..., 0)
∥∥ dτ1...dτν

n∏
j=1

∥∥xj∥∥CTY

= ∥∥pn,ν,f ∥∥
n∏
j=1

∥∥xj∥∥CTY . (5.26)

Since ∥∥pn,ν∥∥ =
∑

f⊂∂νRn+

∥∥pn,ν,f ∥∥ , (5.27)

then summing up the terms (5.26) over all f ⊂ ∂νRn+ we obtain

∥∥pn,ν (x1, . . . , xn) (t)
∥∥
Y

≤ ∥∥pn,ν∥∥
n∏
j=1

∥∥xj∥∥CTY , (5.28)

implying (5.23). Since in the integral (5.12) t − τj ≤ t , then if xj (t) = 0 for t ≤ 0
then pn,ν (x1, . . . , xn) (t) = 0 for t ≤ 0 and the subspace CT0,Y is invariant under the
action of pn,ν . �

Now we define a causal power series which is an abstract version of the nonlinear
polarization series (1.12). Namely,

p (x) =
∑
n≥n0

pn (x) , pn (x) = pn
(
xn
) = pn (x, . . . , x) , (5.29)

where pn are given by (5.14).
We call a series (5.29) strictly causal if it involves only polynomials of the form

(5.4). Strictly causal series and polynomials form subsets of respectively sets of the
causal series and causal polynomials, as defined by (5.13), (5.29), and, evidently, are
singled out by the condition

pn,ν = 0 if 0 ≤ ν ≤ n− 1 for all n. (5.30)

In other words, for strictly causal series and polynomials the only nonzero densities are
pn,n = pn. From Lemma 5.2 we readily obtain the following statement.



Nonlinear Maxwell Equations in Inhomogeneous Media 555

Lemma 5.3. Let the densities pn,ν satisfy

n∑
ν=0

∥∥pn,ν∥∥ ≤ Cpβ
−n
p , n = 0, . . . . (5.31)

Then p defined by (5.29) is an analytic operator, p ∈ A
(
Cp, βp, CTY , CTY

)
for every

T > 0. The subspace CT0,Y is invariant and p ∈ A
(
Cp, βp, CT0,Y , CT0,Y

)
.

In the next section we consider operators involving time derivatives. The following
statements deal with such operators. First we give an abstract version of (1.14).

Lemma 5.4. Let for an integer n ≥ 1 the form pn, n ≥ 1, be strictly causal (see (5.4)
and Definition 5.1) with a density pn

(−→τ ; ·) = pn,n
(−→τ ; ·) being continuous and con-

tinuously differentiable in −→τ ∈ R
n+ up to the boundary ∂Rn+ and such that
∥∥ṗn,n∥∥ < ∞, (5.32)

where

ṗn,n
(−→τ ; ·) =

n∑
j=1

∂τj pn,n
(−→τ ; ·) . (5.33)

Then the composition ∂t ◦pn = ∂tpn of the form pn and the time differentiation operator
∂t is a causal form with the density ṗn,n

(−→τ ; ·) given by (5.33) and

ṗn,n−1
(−→τ ; ·) = pn

(−→τ ; ·) for −→τ ∈ ∂n−1
R
n
+, (5.34)

pn,ν
(−→τ ; ·) = 0 for 0 < ν ≤ n− 2.

Proof. The statements of the lemma follow straightforwardly from the representation
(5.4) for the strictly causal forms pn and the conditions of the lemma. �
Condition 5.5. Let q be a strictly causal (see Definition 5.1) operator. The densities
qn
(−→τ ; ·), −→τ = (τ1, . . . , τn), n ≥ n0, are assumed to be continuously differentiable in

(τ1, . . . , τn) on R
n+ up to the boundary ∂Rn+. We assume that there exist β > 0, Cq > 0

such that

∫
R
n+


‖qn‖ +

∥∥∥∥∥∥
n∑
j=1

∂τj qn

∥∥∥∥∥∥

 d−→τ +

∫
∂n−1R

n+
‖qn‖ d−→τ < Cqβ

−n, (5.35)

with ‖qn‖ = ∥∥qn (−→τ ; ·)∥∥
Y,Y

for n = n0, n0 + 1, . . . .

Lemma 5.6. Let Condition 5.5 hold. Then q ∈ A
(
Cq, Rq, C

T
0,Y , C

T
0,Y

)
, ∂t ◦ q ∈

A
(
Cq, Rq, C

T
0,Y , C

T
0,Y

)
with Rq = β, Cq = Cq.

Proof. The statement directly follows from Lemmas 5.2, 5.3 and 5.4. �
The following lemma shows that a composition of causal operators is again a causal

operator.
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Lemma 5.7. Let forms pn,µ and gm1,ν1 , . . . , gmn,νn be causal. Then the composition of
the forms

sN,ν (·) = pn,µ
(
gm1,ν1 (·) , . . . , gmn,νn (·)

)
, N = m1 + · · · +mn, (5.36)

is anN -linear causal form as in (5.14) with a density sN,ν; if pn,ν0 and gm1,ν1 , . . . , gmn,νn
are strictly causal then sN,ν is strictly causal too. In addition to that, if we introduce
integers

M0 = 0, Mj = m1 + · · · +mj , j = 1, . . . , n, (5.37)

then for 0 ≤ ν ≤ n,

sN,ν
(−→τ ; −→z ) =

∑
ν1+···+νn=ν

∫
∂µR

n+
pn,µ

(−→τ ′; ǧν1 , . . . , ǧνn
)
d−→τ ′,

(5.38)
ǧνj = gmj ,νj

(
τMj−1+1 − τ ′

j , . . . , τMj
− τ ′

j ; zMj−1+1, . . . , zMj

)

with the convention (5.18) applied to all forms under the integral. The norm of the density
sN,ν satisfies

∥∥sN,ν∥∥ ≤ ‖pn‖

 ∑
ν1+···+νn=ν

n∏
j=1

∥∥gmj ,νj ∥∥

 . (5.39)

Proof. Since the integral over ∂µR
n+ equals the sum of the integrals over the faces

f ⊂ ∂µR
n+, and the formula (5.38) is linear with respect to the densities pn,µ and ǧνj ,

the integral (5.38) expands into a sum of integrals over faces and it is sufficient to consider
the case when the density is non-zero only on one face. Namely, pn = pn,µ = pn,µ,f
and gmj ,νj = gmj ,νj ,fj are supported respectively on faces f and fj . To verify the rep-
resentation (5.38) for sN,ν we plug the expressions for gmj ,νj with the densitygmj ,νj ,fj
into the integral representation (5.12), (5.21) of pn,µ with the integral over the face f of
∂µR

n+. We get then for such pn
(
gm1 , . . . , gmn

)
(t) the following “long” expression

∫
R
µ
f

pn,µ,f


−→τ ; ∫

R
ν1
f1
gm1,ν1,f1

[
τ 1, x1

(
(t − τ1)

−→
1 − −→τ 1

)]
dν1τ 1, ...,∫

R
νn
fn

gmn,νn,fn

[
τn, xn

(
(t − τn)

−→
1 − −→τ n

)]
dνnτn


 dµτ .

(5.40)

Note that

xj

((
t − τj

)−→
1 − −→τ j

)
= xj

((
t
−→
1 − −→τ j

)
− τj

−→
1
)
. (5.41)

After the integration with respect to τj the result depends only on pn,µ,f , gmj ,νj ,fj ,

t
−→
1 − −→τ j and on xj (·). To check that the result can be written in the form of a causal

integral we use (5.21). For simplicity, we take

f = {τµ+1 = ... = τn = 0, τ1 > 0, ..., τµ > 0
}
, (5.42)
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and, hence, If x1 = x1, ..., If xn = 0. Then we recast (5.40) changing the order of
integration∫

R
ν1
f1

dν1τ 1...

∫
R
νn
fn

dνnτn

∫
R
µ
f

dµτ

pn,µ,f

(
t
−→
1 f − −→τ ; gm1,ν1,f1

[
τ1

−→
1 f1 − −→τ 1; If1x1

(−→τ 1
)+ (I − If1

)
x1 (t)

]
,

..., gmn,νn,fn

)
.

(5.43)

Note that in the process of the integration with respect to dµτ the functions xj
(−→τ j

)
are constant, and the result is a multi-linear form with respect to zj = Ifj xj

(−→τ j

) +(
I − Ifj

)
xj (t). It has the following form:∫

R
ν1
f1

dν1τ 1...

∫
R
νn
fn

dνnτn

∫
R
µ
f

pn,µ,f


 t

−→
1 f − −→τ ; gm1,ν1,f1

(
τ1

−→
1 f1 − −→τ 1; z1

)
,

..., gmn,νn,fn

(
τn

−→
1 fn − −→τ n, zn

)

 dµτ .

Since

τj
−→
1 fj − −→τ j = ηj − (t − τj

)−→
1 fj , ηj = t

−→
1 fj − −→τ j , (5.44)

the integral with respect to τ equals the convolution

sn,µ,f,m1,ν1,f1,... ,mn,νn,fn

(
η1, ..., ηn; z1, ..., zn

)
=
∫

R
µ
f

pn,µ,f

(−→τ ; gm1,ν1,f1

(
η1 − τ1

−→
1 f1; z1

)
, ..., gmµ,νµ,fµ

(
ηµ − τµ

−→
1 fµ, zµ

)
,

..., gmn,νn,fn
(
ηn, zn

) )
dµτ . (5.45)

Thus (5.40) equals∫
R
ν1
f1

dν1τ 1...

∫
R
νn
fn

dνnτn

sn,µ,f,m1,ν1,f1,...

(
t
−→
1 f1 − −→τ 1, ..., t

−→
1 fn − −→τ n; If1x1

(−→τ 1
)+ (I − If1

)
x1 (t) ,

..., Ifnxn
(−→τ n

)+ (I − Ifn
)
xn (t)

)
.

This integral has the form of the right-hand side (5.22) of (5.21) with −→τ replaced by−→τ = (−→τ 1, ...,
−→τ n

)
and x replaced by −→x = (x1, ..., xn) . Therefore (5.40) coincides

with a causal integral, in particular sn,µ,,... = 0 when one of t
−→
1 fj − −→τ j /∈ fj since

t
−→
1 fj − −→τ j − τj

−→
1 fj /∈ fj as well when τj ≥ 0 and gmj ,νj ,fj = 0 in this case.

Formula (5.38) is obtained by the summation of (5.40) with respect to f, f1, ..., fn. The
boundedness and the continuity properties can also be verified straightforwardly based
on (5.45). A direct estimation of the norm of (5.45) yields the inequality

sup
η1,...,ηn

∥∥sn,µ,f,m1,ν1,f1,...

(
η1, ..., ηn; z1, ..., zn

)∥∥

≤ ∥∥pn,µ,f ∥∥
n∏
j=1

sup
ηj

∥∥gmj ,νj ,fj (zj )∥∥ . (5.46)
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For the density norm of sn,... defined by (5.19) we get∫ ∥∥sn,... (−→η ,−→z )∥∥ d−→τ
≤
∫ ∫ ∥∥pn,µ,f (−→τ ; ·)∥∥

n∏
j=1

∥∥∥gmj ,νj ,fj
(
ηj − τj

−→
1 fj , zj

)∥∥∥ d−→η dµτ

=
∫ ∫ ∥∥∥pn,µ,f

(
t
−→
1 f − −→τ ; ·

)∥∥∥
n∏
j=1

∥∥∥gmj ,νj ,fj
(
τj

−→
1 fj − −→τ j , zj

)∥∥∥ d−→τ dµτ

≤
∫ ∥∥∥pn,µ,f

(
t
−→
1 f − −→τ ; ·

)∥∥∥ dµτ

n∏
j=1

∥∥gmj ,νj ,fj ∥∥
mj∏
i=1

∥∥zji∥∥ .

Therefore,

∥∥sn,µ,f,m1,ν1,f1,...

∥∥ ≤ ∥∥pn,µ,f ∥∥
n∏
j=1

∥∥gmj ,νj ,fj ∥∥ . (5.47)

To get (5.39) from (5.47) by the summation with respect to f, f1, . . . , fn we use (5.27).
The continuity of sn,µ,f,m1,ν1,f1,... is proven in the following Lemma 5.8. �
Lemma 5.8. Let s

(
η1, ..., ηn; z1, ..., zn

)
be given by (5.45). Then s

(
η1, ..., ηn; ·) is

continuous up to the boundary with respect to every ηj ∈ fj , j = 1, . . . , µ.

Proof. Let us rewrite (5.45) in the form

s
(−→η ; z1, ..., zn

) =
∫
p
(−→τ ; g1

(
η1 − τ1

−→
1 f1; z1

)
,

..., gµ

(
ηµ − τµ

−→
1 fµ, zµ

)
, ..., gn

(
ηn, zn

))
dµτ , (5.48)

where

g1 = gm1,ν1,f1 , ..., gn = gmn,νn,fn, p = pn,µ,f ,
−→η = (η1, ..., ηn

)
. (5.49)

Let us pick any z1, ..., zn such that
∥∥zji∥∥Y = 1. Below we will skip z1, ..., zn in the

notation. Consider a sequence −→η l → −→η 0, l → ∞. Let us also pick a small ε > 0 and
show that for large N , ∥∥s (−→η l

)− s
(−→η 0

)∥∥
Y
< ε, l ≥ N. (5.50)

Notice that since ∥∥gmj ,νj ,fj (ηj )∥∥ ≤ Cn, j = 1, ..., n (5.51)

and (5.20) holds, we can always find large enough ρ to get for all −→η the following
inequality:∫

{|τ |≥ρ}

∥∥∥p (−→τ ; g1

(
η1 − τ1

−→
1 f1;

)
, ..., gµ

(
ηµ − τµ

−→
1 fµ,

)
, ..., gn

(
ηn,
))∥∥∥

Y
dµτ

< ε/6.
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Let the number T0j be defined to satisfy the following relations ηj0 − τj
−→
1 fj ∈ fj for

0 ≤ τj < T0j , ηj0 − τj−→1 fj /∈ fj for τj > T0j . Such a number T0j exists and is unique
since fj is convex. For δ > 0 we set

�δ = {τ ∈ f : |τ | ≤ ρ,
∣∣τj − T0j

∣∣ < δ, for one of j = 1, ..., µ
}

(5.52)

and we choose δ to be so small that

∫
�δ

∥∥∥p (−→τ ; g1

(
η1 − τ1

−→
1 f1

)
, ..., gµ

(
ηµ − τµ

−→
1 fµ

)
, ..., gn

(
ηn
))∥∥∥

Y
dµτ < ε/6.

We choose N0 to be so large that
∣∣ηj l − ηj0

∣∣ < δ/2 when l ≥ N0 for all j . Notice that

gj

(
ηj l − τj

−→
1 fj

)
vanishes when τj > T0j +δ according to (5.18) since

∣∣ηj l − ηj0

∣∣ <
δ and ηj l − τj

−→
1 fj /∈ fj in this case. Therefore the integrand in (5.48) with −→η = −→η l

is non-zero only when 0 ≤ τj ≤ T0j + δ/2, j = 1, ..., µ; we denote this domain byD.
Consider now

∫
D∩{|τ |≤ρ}\�δ

‖p̄‖Y dµτ , (5.53)

p̄ = p
(−→τ ; g1

(
η1l − τ1

−→
1 f1

)
, ..., gµ

(
ηµl − τµ

−→
1 fµ

)
, ..., gn

(
ηnl
))

−p
(−→τ ; g1

(
η10 − τ1

−→
1 f1

)
, . . . , gµ

(
ηµ0 − τµ

−→
1 fµ

)
, ..., gn

(
ηn0
))

with l ≥ N0. We would like to show that the domain of this integral is such that
ηj l − τj

−→
1 fj ∈ fj , j = 1, ..., µ. Indeed, if τj ≤ T0j + δ/2, ηj l − τj

−→
1 fj /∈ fj then

ηj l−τ ′
j

−→
1 fj = ξ ∈ ∂fj , 0 ≤ τ ′

j ≤ τj , and we have all ξi ≥ 0, ξi0 = 0 for some i0 ≤ νj .

Since
∣∣ηj l − ηj0

∣∣ < δ/2, the ith0 coordinate ηj0i0 of ηj0 −τ ′
j

−→
1 fj satisfies

∣∣ηj0i0

∣∣ < δ/2,

and, hence, ηj0−τ ′
j

−→
1 fj −β−→

1 fj /∈ fj forβ ≥ δ/2, therefore τj+δ/2 > T0j . Therefore∣∣T0j − τj
∣∣ ≤ δ/2 and τ ∈ �δ.This contradicts the requirement τ ∈ D∩{|τ | ≤ ρ}\�δ .

Since all the arguments ηj l − τj
−→
1 fj and ηj0 − τj

−→
1 fj in (5.53) are shown to be

in fj , the functions gj are continuous on the closed bounded set D ∩ {|τ | ≤ ρ} \ �δ .
Hence

∥∥∥gj
(
ηj l − τj

−→
1 fj

)
−
(
ηj0 − τj

−→
1 fj

)∥∥∥
Y

≤ εl, j = 1, ..., n, (5.54)

where εl → 0 as l → ∞. Since
∥∥p (−→τ )∥∥ is bounded, the integral (5.53) is not greater

than ε/6 when l ≥ N1 for large enough N1. Splitting s
(−→η l

)− s
(−→η 0

)
into the sum of

integrals over the following three domainsD∩{|τ | ≥ ρ},D∩�δ andD∩{|τ | ≤ ρ}\�δ
and using the above estimates we obtain (5.50). �
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6. Abstract Nonlinear Maxwell Equations

A substantial part of the nonlinear analysis of the Maxwell equations can be carried out
in an abstract and simpler form as it is shown below. Conditions imposed on quantifies
of interest are motivated by the original nonlinear Maxwell equations.

Let m be a linear self-adjoint operator in H, and let us consider the equation

∂tu = −imu− j (t) . (6.1)

We assume that for negative times everything is at rest, i.e.

j (t) = 0, u (t) = 0, t ≤ 0. (6.2)

The properties of solutions (6.1) are described in terms of the nested Hilbert spaces

Hs
m = {u : msu ∈ H} , Hs

m = Hms ⊂ H, s = 1, 2, ..., (6.3)

with the norms defined by (3.45) with B = m. In terms of the spectral projections P (λ)
associated with the operator m we can write

msu =
∫ ∞

−∞
λsdP (λ) u, ‖u‖2

Hs
m

=
∫ ∞

−∞

(
λ2s + 1

)
d (P (λ) u, u)H . (6.4)

Observe that, in view of the self-adjointness of m in H, the operator of linear evolution
eimt is unitary in H. Besides, every Hs

m is invariant under the action of eimt , and eimt

is also unitary on Hs
m since

(
eimt u, eimt v

)
Hs
m

=
(
mseimt u,mseimt v

)
= (msu,msv

) = (u, v)Hs
m
. (6.5)

The solution to Eq. (6.1) under the conditions (6.2) takes the form

u0 (t) = −
∫ t

−∞
e−im(t−t

′)j
(
t ′
)
dt ′. (6.6)

The validity of this representation is given by the following lemma.

Lemma 6.1. Let H be a separable Hilbert space and m be a self-adjoint operator in it.
Let j (·) ∈ CT0,Hs , s ≥ 1. Then eimt j (t) is a continuous Hs

m-valued function of t . Let

u (t) = −
∫ t

−∞
e−im(t−t

′)j
(
t ′
)
dt ′. (6.7)

Then u (·) ∈ CT0,Hs
m

, ∂tu (·) ∈ CT
0,Hs−1

m
,

‖u (t)‖Hs
m

≤
∫ t

0

∥∥j (t ′)∥∥Hs
m
dt ′, ‖∂tu (t)‖Hs−1

m

≤
∫ t

0

∥∥j (t ′)∥∥Hs
m
dt ′ + ‖u (t)‖Hs

m
, (6.8)
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and u (·) satisfies Eq. (6.1) in CTHs−1
m

. The solution operator (∂t + im)−1 : j (·) �→ u (·)
given by (6.7) extends by continuity to a bounded operator from L1

(
[−∞, T ] ; Hs

m

)
to

CTHs
m

with the norm

∥∥∥(∂t + im)−1 j

∥∥∥CTHs
m

≤ ‖j‖L1([−∞,T ];Hs
m ) for any T ≥ 0, (6.9)

and (∂t + im)−1 L1,0
(
[−∞, T ] ; Hs

m

) ⊂ CT0,Hs
m

. The operator ∂t (∂t + im)−1 extends

to a bounded operator from L1
(
[−∞, T ] ; Hs

m

)
to CTHs−1

m
.

Proof. The linear operator eimt continuously depends on t in the strong operator topol-
ogy and is uniformly bounded (it is unitary in Hs

m for every t), j (t) continuously depends
on t . Therefore eimt j (t) is a continuous function of t . The function

∫ t

−∞
eimt

′
j
(
t ′
)
dt ′ (6.10)

is a continuously differentiable Hs
m-valued function of t and

∂t

∫ t

−∞
eimt

′
j
(
t ′
)
dt ′ = eimt j (t) . (6.11)

Let us introduce

u0 (t) = −
∫ t

−∞
e−im(t−t

′)j
(
t ′
)
dt ′ = −e−imt

∫ t

−∞
eimt

′
j
(
t ′
)
dt ′, (6.12)

which is a continuous function of t in Hs
m. The operator e−imt considered as an operator

from Hs
m to Hs−1

m is strongly differentiable with respect to t and

∂tu0 (t) = ime−imt
∫ t

−∞
eimt

′
j
(
t ′
)
dt ′ − j (t) . (6.13)

Consequently, (6.1) holds with both parts being in Hs−1
m . Obviously, u0 (t) = 0, t < 0.

The inequalities (6.8) follow straightforwardly from (6.6), (6.13). Note that (6.8) implies

‖u0‖CTHs
m

≤
∫ T

−∞
‖j (t)‖Hs

m
dt for any T ≥ 0, (6.14)

which, in turn, yields the boundedness of the operator (∂t + im)−1 together with the
inequality (6.9). Using this inequality we extend (∂t + im)−1 to functions j (t) having
the following norm bounded:

‖j‖L1([−∞,T ];Hs
m ) =

∫ T

−∞

∥∥j (t ′)∥∥Hs
mHs dt

′ < ∞. (6.15)

The inequalities (6.8) imply the boundedness of the operator ∂t (∂t + im)−1 from
L1 ([−∞, T ] ; Hs) to CTHs−1

m
. �
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We use the formula (6.7) to define the action of the operator (∂t + im)−1 on
L1
([−∞, T ; Hs

m

])
yielding a solution to (6.1). In particular, we use (6.12) for j ∈

L1,0
([−∞, T ; Hs

m

])
.

Let us look at a modification of the linear evolution equation (6.1) by inserting there
a nonlinearity q to get an abstract version of the Maxwell equations (7.36). An abstract
version q of the operator q given by (7.37) acts on trajectories u (t), −∞ < t < T , in
Hs

m rather than just states in Hs
m. We assume q to be a strictly causal analytic function

of u ∈ CT0,Hs
m

represented by a power series as in (5.29) (see Definition 5.1).
Our abstract version of the nonlinear Maxwell equations is

∂tu = −im {u+ q (u)} (t)− j (t) , j (t) = u (t) = 0, t ≤ 0. (6.16)

Now we recast Eq. (6.16) to “eliminate” the action of the unbounded operator m onto
the nonlinearity. We introduce 4, 5

w = u+ q (u) (6.17)

and recast (6.16) as

∂tw = −imw (t)+ ∂tq (u)− j (t) (6.18)

(see Lemma 6.2 for a justification). By Lemma 6.1 Eq. (6.18) is equivalent to the fol-
lowing equation:

w (t) = u0 (t)+
∫ t

−∞
e−im(t−t

′)∂tq (u)
(
t ′
)
dt ′. (6.19)

Expressing w in terms of u we get

u (t) = u0 (t)− q (u)+
∫ t

−∞
e−im(t−t

′)∂tq (u)
(
t ′
)
dt ′. (6.20)

To write (6.20) in the form of (4.24) we introduce the operator

R (u) (t) = −q (u)+
∫ t

−∞
e−im(t−t

′)∂tq (u)
(
t ′
)
dt ′, t ≤ T (6.21)

which allows us to rewrite (6.20) as

u = u0 + R (u) . (6.22)

The next lemma shows Eqs. (6.16), (6.20) under natural conditions are equivalent.

Lemma 6.2. Let j ∈ L1,0
([−∞, T ; Hs

m

])
, operators u → ∂tq (u) and u → q (u)

act from the neighborhood�r1 =
{
u : ‖u‖CTHs

m

≤ r1

}
of zero in CT0,Hs

m
into CTHs

m
. Let

u ∈ �r1 ⊂ CT0,Hs
m

be a solution to (6.20). Then, first, ∂tu ∈ CT
0,Hs−1

m
and, second, u (t) is

a solution to (6.16) for t ≤ T . Conversely, if u belongs to�r1 ⊂ CT0,Hs
m
, ∂tu ∈ CT

0,Hs−1
m

and u (t) is a solution of (6.16) then u is a solution of (6.20).
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Proof. If u is a solution of (6.20) then by Lemma 6.1 ∂tu ∈ CT
0,Hs−1

m
. Forw = u+ q (u)

obviouslyw ∈ �r1+r2 and ∂tw ∈ Hs−1
m .By the assumptions q (u) , ∂tq (u) ∈ CT0,Hs

m
and

the equality (6.19) holds. By Lemma 6.1 we get (6.18) and since ∂tw = ∂tu+∂tq (u)we
get (6.16). Conversely, if u ∈ �r1 we get (6.18), then by Lemma 6.1 we get the equalities
(6.19) and (6.20). �

Now we prove our main statements on the abstract Maxwell equations (6.16).

Theorem 6.3. Let H be a separable Hilbert space and m be a self-adjoint operator in
it. Let T > 0, q be an analytic function inCT0,Hs

m
, and constantsCq andRq be such that

q ∈ A
(
Cq, Rq, C

T
0,Hs

m
, CT0,Hs

m

)
and ∂tq ∈ A

(
Cq, Rq, C

T
0,Hs

m
, CT0,Hs

m

)
. Let n0 ≥ 2,

qn = 0 for n ≤ n0 − 1, qn0 	= 0. Let j ∈ L1,0
(
[−∞, T ] ; Hs

m

)
and

‖j‖L1([−∞,T ];Hs
m ) =

∫ T

−∞
‖j (t)‖Hs

m
dt ≤ δ0, (6.23)

where δ0 is small enough for the following condition to hold:

1 + T <
1

δ0

Rq
(
Rq − 4δ0

)
8Cq

. (6.24)

Then there exists a solution u ∈ CT0,Hs
m

of the the abstract Maxwell equation (6.20).
The solution u = U (u0) is a uniquely determined analytic function of u0 with U being
an analytic operator in CT0,Hs

m
. In particular, u expands into the convergent series

u (t) = U (u0) (t) = u0 (t)+
∑
n≥n0

Un (u0) (t) , (6.25)

‖Un (u0)‖CT
0,Hs

m

≤ C∗GR−n
∗G ‖u0‖nCT

0,Hs
m

, n ≥ n0, (6.26)

with C∗G and R∗G as in Theorem 4.8, where RF = Rq, CF = (1 + T )Cq, γL = 1. The
operators Un can be found from the following recursive relations:

Un =
∑

m≥n0, n1+···+nm=n
Rm

(Un1 , . . . ,Unm
)
, U1 is the identity operator, (6.27)

with Rn being given by

Rn (u) (t) = −qn (u) (t)+
∫ t

−∞
e−im(t−t

′) [∂tqn (u)]
(
t ′
)
dt ′, n ≥ n0 ≥ 2. (6.28)

The first significant term Un0 in (6.25), the first nonlinear response, has the following
representation:

Un0 (u0) (t) = Rn0 (u0) (t)

= −qn0 (u0)+
∫ t

0
e−im(t−t

′) [∂t ′qn0 (u0)
] (
t ′
)
dt ′

= −i
∫ t

0
e−im(t−t

′)mqn0
(u0)

(
t ′
)
dt ′. (6.29)
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Any solution of (6.20) satisfying ‖u‖
C
Tδ
0,Hs

m

≤ δ with a sufficiently small δ is unique. If

n0 > 2 and δ0 ≤ Rq/8 the condition (6.24) can be replaced by

1 + T <
Rq
(
8δ0/Rq

)1−n0

2Cq
. (6.30)

Proof. Equation (6.20) when rewritten as (6.22) is of the form of Eq. (4.24) with z = u,
X = CT0,Hs

m
, x = u0, L being the identity operator. The n-linear operators Fn = Rn

in the series decomposition of F = R are defined by (6.28). To apply Theorem 4.8
we need to estimate the norms of the n-linear operators Fn. Since ∂tqn (u) ∈ CT0,Hs

m
,

[∂tqn (u)]
(
t ′
) = 0 for t ≤ 0 and e−im(t−t ′) are unitary in Hs

m, then for t ≥ 0, t ≤ T ,

in view of (5.35) we have∥∥∥∥
∫ t

−∞
e−im(t−t

′)∂tqn (u)
(
t ′
)
dt ′
∥∥∥∥Hs

m

≤
∫ t

0

∥∥∂tqn (u) (t ′)∥∥Hs
m
dt ′

≤ t sup
t ′≤t

∥∥∂tqn (u) (t ′)∥∥Hs
m

≤ T ‖∂tqn (u)‖CT
0,Hs

m

.

Since q, ∂tq ∈ A
(
Cq, Rq, C

T
0,Hs

m
, CT0,Hs

m

)
we obtain from (6.28) that

‖Rn (u)‖X ≤ (1 + T )CqR
−n
q ‖u‖nX , n = 2, 3, ... . (6.31)

Observe that ‖L‖ = 1. The inequality (6.31) implies that R belongs to the class
A
(
(1 + T )Cq, Rq, X,X

)
. We would like to apply now Theorem 4.8 and Corollary

4.11 with RF = Rq, CF = (1 + T )Cq, γL = 1. By Theorem 4.8 u = G(u0),
G ∈ A∗ (C∗G,R∗G,X,X), and, hence, setting G = U we obtain the relations (6.25),
(6.26). Note that according to (6.23) and (6.14) ||u0||Y ≤ δ0. By Corollary 4.11 G(u0)

is defined for

‖u0‖Y ≤ δ0 < αR∗G′ , (6.32)

where R∗G′ is given by (4.56), that is

R∗G′ = R2
F

2
(
RF + 2CF ′ + 2

√
RFCF ′ + C2

F ′
) , CF ′ = αn0−1CF . (6.33)

Note that 2
√
CF ′

√
RF + CF ′ ≤ RF +CF ′ +CF ′ , and, hence, the condition δ0 < αR∗G

is satisfied for δ0/α < R2
F / [4 (RF + 2CF ′)]. Consequently, a sufficient condition for

the solvability of (6.22) takes the form 2CF ′ <
αR2

q

4δ0
− Rq that is

2αn0−1 (1 + T )Cq <
αR2

q

4δ0
− Rq. (6.34)

If n0 = 2 we set α = 1 and obtain the condition (6.24). If n0 > 2 and δ0 ≤ Rq/8 we set
α = 8δ0/Rq and obtain the condition (6.30). If conditions (6.24) or (6.30) are satisfied
Theorem 4.8 implies the existence of the solution u = G(u0) = U (u0) of (6.20) written
in the form (6.22). We obtain then (6.25) from (4.27), and the inequality (6.26) follows
from the definition of the class A∗ (CG,RG,X,X), see Definition 4.3. Formula (6.27)
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follows from (4.29). Note that in (4.29) Fjs = Fj and s = 0 since F does not depend
on u0, and (4.29) takes the form of (6.27). The uniqueness of a small solution follows
from Lemma 4.10. �

The next theorem adds some more details on properties of the solution for the case
when q and ∂tq are causal.

Theorem 6.4. Assume that Condition 5.5 is satisfied. Then statements of Theorem 6.3

hold. In addition to that, we haveU ∈ A
(
C∗G,R∗G/e, CT0,Hs

m
, CT0,Hs

m

)
, whereC∗G,R∗G

are given by (4.25), (4.26) with

RF = Rq = β,CF = (1 + T )Cq = (1 + T )Cq, (6.35)

and the constants Cq and β are from Condition 5.5.

Proof. By Lemma 5.6 q, ∂tq ∈ A
(
Cq, Rq, C

T
0,Hs

m
, CT0,Hs

m

)
and Theorem 6.3 can be

applied. �

7. Analysis of the Original Maxwell Equations

In this section we provide the proofs of Theorem 1.3 and a more detailed Theorem 7.8
assuming that Conditions 1.1 and 1.2 are satisfied. Our analysis of the Maxwell equa-
tions (7.29) and its regularized form (7.42) is based on their reduction to the abstract
Maxwell equation (6.16) and consequent use of Theorems 6.3 and 6.4. First we show
that the constituency relation (1.8) is given by a causal analytic operator considered in
the previous section.

7.1. Analyticity of the constituency relation. In this subsection we study operators (1.12),
(1.13) that are involved in the nonlinear constituency relation (1.8). To use results of
Sects. 4 and 5 we set

Y = Hs , X = CT0,Hs = C0
(
[−∞, T ] ; Hs

)
. (7.1)

The operators corresponding to (1.13) fit into the abstract framework of the previous
section and possess an additional property. The multi-linear forms of the type (1.13),
(1.14) define operators

Pn (E1, . . . ,En) (t) =
n∑
ν=0

∫
∂νRn+

Pn,ν
[
r,−→τ ; E1 (t − τ1) , . . . ,En (t − τn)

]
dντ,

(7.2)

where the densities Pn,ν
[
r,−→τ ; −→e ] are n-linear forms in −→e ∈ C

n that depend on vari-
ables: −→τ = (τ1, . . . , τn) ∈ ∂νRn+ and act on −→e = (e1, . . . , en) ∈ (C3

)n
. Causality

implies that Pn

(−→E (·)
)
(·, t) depends only on E(j)

(·, tj ) with tj ≤ t . The operators

Pn defined by (7.2) have an important property: they are spatially local, namely

the value of Pn

(−→E (·)
)
(r, t) depends only on E(j)

(
r, tj

)
with the same r. (7.3)
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In this subsection we consequently establish the analyticity and the causality for the
operators PNL (E), ∂tPNL (E) from (1.8). Further, we prove that (1.8) determines E as an
analytical function of D, namely that E = S (D), where S (D), ∂tSNL (D) are analytic
causal operators. According to the following proposition the Sobolev space Hs

(
R
d
)

of
scalar functions with s > d/2 is a generalized Banach algebra (see [49], Sect. 21.21 or
[42], Sect. 2.8.3)

Proposition 7.1. For any integer s > d/2 there exists a constant γ0 depending only on
s and d such that

‖uv‖Hs ≤ γ0 ‖u‖Hs ‖v‖Hs , (7.4)

and, consequently,

‖u1...un‖Hs ≤ γ n−1
0 ‖u1‖Hs ... ‖un‖Hs , n ≥ 2. (7.5)

To verify the continuity of multilinear polarization forms such as in (1.13) we use
Proposition 7.1 and obtain the following lemma.

Lemma 7.2. Let Pn
(
r;−→e ), −→e = (e1, . . . , en) ∈ C

mn, be n-linear operators (tensors)
from C

mn to C
m with coefficients that depend on r ∈ R

d . If Ej = Ej (r) , j = 1, ..., n,

are functions from Hs , s > d/2, Pn
(
·; −→E (·)

)
belongs to Hs = Hs

m. The mapping

Pn :
−→E (r) �→ Pn

(
r; −→E (r)

)
determines a bounded n-linear operator Pn from

(
Hs
m

)n
to Hs

m and there exist positive constants C and γ depending only on s, m and d such
that

‖Pn‖Hs ,Hs ≤ Csγ
−n ‖Pn‖Cs , (7.6)

where the norm ‖Pn‖Cs of the tensor Pn (r) is defined by (2.10). In addition, for any
i, 1 ≤ i ≤ n,

∥∥∥Pn
(−→E )∥∥∥

H0
≤ C′

sγ
−n ‖Pn‖C0 ‖Ei‖H0

∏
j 	=i

∥∥Ej
∥∥

Hs . (7.7)

Proof. Since the tensors can be written in coordinates, it is sufficient to consider a scalar
case. Notice first that there exists a constant γ1 depending only on s ≥ 0 such that

‖uv‖Hs ≤ γ1 ‖u‖Cs ‖v‖Hs . (7.8)

Combining (7.8) with (7.5) we get (7.6). To get (7.7) we note that by the Sobolev embed-
ding theorem in R

d ,

‖u‖C0 ≤ C′ ‖u‖Hs , s > d/2 (7.9)

and

‖uv‖H 0 ≤ ‖u‖C0 ‖v‖H 0 ≤ C′ ‖u‖Hs ‖v‖H 0 . (7.10)

When u is a product of functions we apply (7.5) and obtain (7.7). �
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As a direct corollary we obtain the following lemma.

Lemma 7.3. Let densities Pn (r; τ ) = Pn
(
r; τ ; −→e ) that depend on the parameters

τ = (τ1, . . . , τν) ∈ R
n+ and act on −→e = (e1, . . . , en) ∈ C

3n satisfy Condition
1.2. If Ej = Ej (r) are functions from Hs , s > 3/2, then for any τ = τ1, . . . , τn

Pn

(
·; τ ; −→E (·)

)
belongs to Hs and there exist positive constants C, C′ and γ depend-

ing only on s such that

∥∥∥Pn
(
·; τ ; −→E

)∥∥∥
Hs

+
∥∥∥Ṗn

(
·; τ ; −→E

)∥∥∥
Hs

(7.11)

≤ Cs

γ n

(‖Pn (τ )‖Cs + ∥∥Ṗn (τ )∥∥Cs )
n∏
j=1

∥∥Ej
∥∥

Hs . (7.12)

In addition, for any 1 ≤ i ≤ n,

∥∥∥Pn
(
·; τ ; −→E

)∥∥∥
H0

+
∥∥∥Ṗn

(
·; τ ; −→E

)∥∥∥
H0

(7.13)

≤ Cs

γ n
‖Ei‖H0

(‖Pn (τ )‖C0 + ∥∥Ṗn (τ )∥∥C0

)∏
j 	=i

∥∥Ej
∥∥

Hs . (7.14)

Lemma 7.4. Let Condition 1.2 hold and Pn (E) be defined by (1.13). Then Condition 5.5
holds for the densities qn

(−→τ ; ·) = Pn (·; τ ; ·) with Y = Hs , β = γ βP , Cq = CsCP .

The constants Cs and γ are the same as in (7.11), CP , βP are the same as in (1.18). For
any T > 0 the series (1.12) determines an analytic operator PNL ∈ A (CP, RP, X,X)

where CP = CsCP , RP = γ βP , X = CT0,Hs = C0 ([−∞, T ] ; Hs) , s > 3/2. The

operator ∂tPNL is also an analytic operator in CT0,Hs , ∂tPNL ∈ A (CP, RP, X,X).
The operators PNL and ∂tPNL are respectively strictly causal and causal; they satisfy
Condition 2.1.

Proof. By (1.13) PNL is strictly causal. By Condition 1.2 and Lemma 7.3 Pn = qn sat-
isfy the inequality (5.35), therefore Condition 5.5 holds. By Lemma 5.6 PNL, ∂tPNL ∈
A (CsCP , γ βP ,X,X). The fact that ∂tPNL (E) is causal follows from Lemma 5.4.

To check that Condition 2.1 is fulfilled for ∂tPNL we use the fact that the multilinear

operators ∂tPn
(−→E ) are represented in the form (5.13), (5.33) by the explicit formulas

(1.14) involving the densities Pn
(
·; τ ; −→E

)
, Ṗn

(
·; τ ; −→E

)
to which we can apply the

inequalities (7.13). We pick a test function ψ (t, r) and, then, taking the strictly causal
part Pn,n of (1.14) proceed similarly to (5.26):

∫ T1

0

∫
ψ (t, r)Pn,n

(−→E ) (r, t) drdt

=
∫ T1

0

∫
ψ (t, r)

∫ t

−∞
· · ·
∫ t

−∞
Ṗn

(
r; t−→1 − t; −→E (r, t)

) ∏
j

dtj drdt

≤
∫ T1

0

∫ ∞

0
· · ·
∫ ∞

0

∥∥∥Ṗn
(
·; τ ; −→E

(
·, t−→1 − τ

))∥∥∥
H0

‖ψ (·, t)‖H0

∏
j

dτj dt.
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Using the inequality (7.13) for a given i we find that the right-hand side is not greater
than Csγ−n times

∏
j 	=i

∥∥Ej
∥∥CTHs

∫ T1

0

∫ ∞

0
· · ·
∫ ∞

0

∥∥Ṗn (τ )∥∥C0 ‖Ei (t − τi)‖H0 ‖ψ (t)‖H0

∏
j

dτj dt

≤
∏
j 	=i

∥∥Ej
∥∥CTHs

||ψ ||L2([0,T1],H0) ‖Ei‖L2([0,T1],H0)

∫ ∞

0
· · ·
∫ ∞

0

∥∥Ṗn (τ )∥∥C0

∏
j

dτj .

Using the inequality (1.18) we get
∫ T1

0

∫
ψ (t, r)Pn,n

(−→E ) (r, t) drdt

≤ Csγ
−n∏

j 	=i

∥∥Ej
∥∥CTHs

‖ψ‖L2([0,T1],H0) ‖Ei‖L2([0,T1],H0) CP β
−n
P .

Setting ψ (t, r) = Pn,n
(−→E ) (r, t) we obtain

∥∥∥Pn,n
(−→E )∥∥∥

L2([0,T1],H0)
≤ CPCs (γ βP )

−n∏
j 	=i

∥∥Ej
∥∥CTHs

‖Ei‖L2([0,T1],H0) . (7.15)

Observe that a similar estimate holds for the term Pn,n−1

(−→E ) in (1.14). Hence

∥∥∥∂tPn
(−→E )∥∥∥

L2([0,T1],H0)
≤ 2CPCsR

−n
P ‖Ei‖L2([0,T1],H0)

∏
j 	=i

∥∥Ej
∥∥CTHs

, (7.16)

where RP = γ βP . Using this inequality and the evaluations similar to (4.51)–(4.53) we
obtain the following estimate:∥∥∂tPn (En1)− ∂tPn

(
En2
)∥∥
L2([0,T1],H0)

≤ 2CPCsR
−2n
P max

(
‖E1‖CTHs , ‖E2‖CTHs

)n−1 ‖E1 − E2‖L2([0,T1],H0) ,

which, after the summation in n, allows to conclude that Condition 2.1 holds. �
Lemma 7.5. Let Pn (E) be defined by (1.13) and Condition 1.2 hold with some s ≥ 2.
Let

RS =
RP + 2CπP − 2

√
RPCπP + C2

πP

1 + γη
, γη = ‖η‖Hs ,Hs , (7.17)

CS = RP

2 (RP + CπP)

(
RP + (1 + γη

)
RS
)− RS, (7.18)

where CπP = 4πγηCP, and the constants RP, CP are the same as in Lemma 7.4. Then
for every T > 0 there exists a unique analytic operator SNL in the space X = CT0,Hs

such that, first, SNL ∈ A∗ (CS, RS,X,X) , SNL ∈ A (CS,RS/e,X,X), and, second,

E = S (D) = ηD + SNL (D) (7.19)
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solves Eq. (1.8) for ‖D‖CTHs < RS. The operator SNL (D) is a strictly causal analytic

function of D represented by the convergent power series

SNL (D) =
∑
n≥n0

Sn (D) , ‖D‖CTHs < RS. (7.20)

The operators Sn satisfy the following recursive formulas:

S1 = η, Sn (·) = −4πη
∑

m≥n0, n1+···+nm=n
Pm
(Sn1 (·) , . . . ,Snm (·)

)
, n ≥ 2, (7.21)

in particular

Sn = 0, 2 ≤ n ≤ n0 − 1, Sn0 (D) = −4πηPn0

(
(ηD)n0

)
. (7.22)

The polynomials Sn (D (·)) are spatially local as in (1.13), (7.3).

Proof. Let us rewrite the equality (1.8) to make it fit the form (4.24):

E (r, t) = η (r)D (r, t)− 4πη (r)PNL (E) (r, t) , (7.23)

where η (r) is defined by (3.2). Then we apply Theorem 4.8 with L = η, x = D,
z = E, F (z) = −4πηPNL (E), X = CT0,Hs = C0 ([−∞, T ] ; Hs). Note that in (4.29)
Fjs = 0 when s 	= 0, Fj0 = Fj and since F does not depend on D, and (4.29) takes
the form of (7.21). By Theorem 4.8 we obtain that (i) the series (7.20) converges; (ii)
SNL ∈ A∗ (CS, RS,X,X) and E = S (D) = ηD + SNL (D) is a solution of (7.23).
By Corollary 4.6 we have SNL ∈ A∗ (CS, RS/e,X,X). By Lemma 5.7 operators Sn
are strictly causal. Since a composition of spatially local operators is spatially local, Sn
defined by (7.21) are spatially local. �

Notice that the statements of Lemma 7.5 imply that the function SNL (D) has the
radius of convergence which does not depend on T .

Lemma 7.6. Assume that Condition 1.2 is satisfied. Then the operator ∂t ◦SNL = ∂tSNL
is an analytic operator such that ∂tSNL ∈ A∗ (CE,RE,X,X), ∂tSNL ∈
A (CE,RE/e,X,X), where X = CT0,Hs ,

RE = RPRS

RP + CS
,CE = 4πγη

CSCP

RP + CS
, (7.24)

and the constants CP, RP, CE,RE, γη are as in Lemmas 7.4 and 7.5. The operator
∂tSNL (D) is represented by the power series

∂tSNL (·) =
∑
n≥n0

∂tSn (·) , (7.25)

where ∂tSn satisfy the formulas based on PNL and S (D) defined by (7.20)–(7.22)

∂tSn (·) = −
∑
m≥1

∑
n1+···+nm=n

4πη∂tPm
(Sn1 (·) , . . . ,Snm (·)

)
, n ≥ n0, (7.26)

where ∂tPm are given in (1.14).
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Proof. According to Lemma 7.5 we can rewrite (7.23) in the form

E = ηD − 4πηPNL (S (D)) , (7.27)

and comparing with E = ηD + SNL (D) we conclude that

SNL (D) = −4πηPNL (S (D)) , ∂tSNL (D) = −4πη∂tPNL (S (D)) . (7.28)

Using Lemma 7.4 we conclude that −4πηPNL ∈ A (4πγηCP, RP/e,X,X
)
.According

to Theorem 4.12 the composition −4πη∂tPNL (S) belongs to the classes
A∗ (CS, RS,X,X) and A (CS,RS/e,X,X) . �

7.2. Nonlinear Maxwell equations in divergence-free variables and existence of a
solution. To construct and study solutions to the Maxwell equations we need to re-
cast the equations to an equivalent form which, firstly, involves only divergence free
fields, and, secondly, provides means to control the spatial regularity of the fields as they
evolve in time. For a spatially inhomogeneous medium when the material constants,
in particular ε, depend on the position vector r, there is an advantage in selecting the
electric inductance D rather than electric field E to be the primary field variable, because
of the simplicity of the condition ∇ · D = 0 compared with ∇ · (ε (r)E) = 0. This
advantage is even greater in the nonlinear case since Eq. (2.15) becomes nonlinear. For
this reason we recast the constitutive relations (1.8) to express E (·) as a function of
D (·).

Substituting the expression E = S (D) given by (7.19) into the Maxwell equations
(1.1), (1.2) and (1.5) we get the following operator form of the Maxwell equations:

∂tU (t) = −iMU (t)+ iQ (U) (t)− J (t) ; U (t) = 0 for t ≤ 0, (7.29)

where U,M, J are given in (3.4),

Q(U) = i

[
0

∇×SNL (D)

]
, (7.30)

and

∇ · D = ∇ · B = ∇ · JD = ∇ · JB = 0, (7.31)

J (t) = 0 for t ≤ 0. (7.32)

We look for a solution U (t) ,−∞ < t ≤ T that belongs to C0 ([−∞, T ] ; Hs) with
s ≥ 2 and ∂tU ∈ C0

(
[−∞, T ] ; Hs−1

)
. Evidently, (7.32) is consistent with the require-

ment U (t) = 0 for t ≤ 0 in (7.29). Note that for any t the function SNL (D) (t) depends
on the values of the field U

(
t ′
)

at times t ′ ≤ t as in (1.13). Since the expression (7.30) for
the nonlinearityQ(U) involves the curl operator ∇×, it acts from C0 ([−∞, T ] ; Hs) to
C0
(
[−∞, T ] ; Hs−1

)
. To reduce (7.29) to a regular integral form (7.42) with a bounded

nonlinearity that acts in the space C0 ([−∞, T ] ; Hs) we need to apply some transfor-
mations. We can do that by recasting the Maxwell system (7.29) in the form of their
abstract version (6.16) considered in Sect. 6 by setting

m = M̊, Hs
m = H̊s

M, CT0,Hs
m

= C
(
[−∞, , T ] ; Hs

m

) = C
(

[−∞, T ] ; H̊s
M

)
, (7.33)
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where M̊ is defined by (3.25). Below we verify the conditions imposed on abstract
operators in Sects. 5, 6.

Recall that the Banach space C0

(
[−∞, T ] ; H̊s

M

)
consists of H̊s

M -continuous

trajectories U = U (t), −∞ < t ≤ T in H̊s
M satisfying the rest condition U (t) = 0 for

t < 0 with the norm

‖U (·)‖
C
(

[0,T ];H̊s
M

) = sup
−∞<t≤T

‖U (t)‖H̊s
M

= sup
0≤t≤T

‖U (t)‖H̊s
M
. (7.34)

According to (3.21) we have in (7.30),

∇×SNL = ∇×0SNL = ∇×0η̊η̊
−10SNL = ∇×η̊η̊−10SNL, (7.35)

where η is the operator of multiplication by a matrix η (r),η̊ is the restriction of 0η to
L̊2, and η̊−1 is the inverse of η̊ on L̊2, the inverse exists according to Lemma 3.2. Using
this identity we rewrite the Maxwell equations (7.29)– (7.31) in the form

∂tU (t) = −iM̊ [U (t)+ q (U) (t)] − J (t) , (7.36)

where M̊ is defined by (3.25)

M̊ = i

[
0 ∇̊×

−∇×η̊ 0,

]
, q (U) =

∞∑
n=n0

qn (U) , qn (U) = �̊−1
[
0Sn (D)

0

]
, (7.37)

where �̊−1 is the inverse on L̊2
2 of �̊ = 

(2)
0 �̊

(2)
0 from (3.5),(2)0 is defined in (3.38);

the inverse exists according to Lemma 3.3. We assume that the impressed currents in
(1.4) satisfy the following condition:

JD, JB ∈ L1,0

(
[−∞, T ] ; H̊s

)
, (7.38)

and we look for a solution

U =
[

D
B

]
, D,B ∈ C0

(
[−∞, T ] ; H̊s

)
. (7.39)

Recall that the conditions JD, JB ∈ L1,0

(
[−∞, T ] ; H̊s

)
and, similarly, D,B ∈

C0

(
[−∞, T ] ; H̊s

)
include the divergence-free conditions (7.31) as well as the rest

conditions (1.6) and (7.32).
By Lemma 3.1 the operator M̊ in (3.25) is self-adjoint, therefore Lemma 6.1 is appli-

cable and transformations (6.16)–(6.20) are applicable, with notations (7.33). Clearly,
(7.36) has the form of (6.16). Let us look now at the nonlinear equation (7.36) and,
in particular, on its term M̊q which involves the differentiation with respect to space
variables of the nonlinear function of the fields. Following (6.16) –(6.20) we can recast
Eqs. (7.36) and trade off the space derivatives in M̊q for the time derivative ∂tq (U)
which, as we show, results in an analytic operator with respect to U for q of the form
(7.37). Note that in the framework of Sect. 6 Eq. (6.12) becomes

U0 (t) = −
∫ t

−∞
e−i(t−t

′)M̊J
(
t ′
)
dt ′, (7.40)
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obviously U0 (t) = 0 for t < 0 since J (t) = 0 for t < 0. Notice that (6.14) implies

‖U0‖
C0

(
[−∞,T ];H̊s

M

) ≤
∫ T

−∞
‖J (t)‖H̊s

M
dt (7.41)

for any T ≥ 0. Using (6.20) we rewrite (7.36) in the regular integral form

U (t) = U0 (t)− q (U (t))+
∫ t

−∞
e−i(t−t

′)M̊∂t ′ [q (U)]
(
t ′
)
dt ′. (7.42)

By Lemma 6.2 this equation is equivalent to (7.36). Lemma 6.2 is applicable since the
time derivative ∂t ◦ q (U) is a bounded, analytic operator according to the following
lemma.

Lemma 7.7. The function q defined by (7.37) is an analytic function in CT
H̊s
M

for every

T > 0. We also have that q ∈ A∗
(
CQ,RQ, CTHs , CTHs

)
and q belongs to

A

(
CQ,RQ/e, CTH̊s

M

, CT
H̊s
M

)
, where

RQ = RSc−, CQ = CSc+
∥∥∥�̊−1

∥∥∥
H̊s
M ,H̊

s
M

(7.43)

withRS,CS being as in Lemma 7.5,
∥∥∥�̊−1

∥∥∥
H̊s
M ,H̊

s
M

being the norm of the operator �̊−1 in

H̊s
M and c+, c− being as in Lemma 3.4. The operators ∂tq ∈ A∗

(
C′
Q,R

′
Q, CTHs , CTHs

)
,

∂tq ∈ A
(
C′
Q,R

′
Q/e, CTH̊s

M

, CT
H̊s
M

)
,

R′
Q = REc−, C′

Q = CEc+
∥∥∥�̊−1

∥∥∥
H̊s
M ,H̊

s
M

, (7.44)

where RE,CE are the same as in Lemma 7.6.

Proof. Operator q is obtained from SNL by applying the linear operator −�̊−1 to(
0SNL

0

)
. By Lemma 3.4 the norms in H̊s

M , H̊s and Hs are equivalent on H̊s , and,

hence, for V ∈ H̊s ,

‖0SnV‖H̊s
M

≤ c+ ‖0SnV‖H̊s ≤ c+ ‖SnV‖Hs ≤ c+ ‖Sn‖Hs ,Hs ‖V‖nHs

= c+ ‖Sn‖Hs ,Hs ‖V‖n
H̊s

≤ c+c−n− ‖Sn‖Hs ,Hs ‖V‖n
H̊s
M

≤ c+c−n− CSR
−n
S ‖V‖n

H̊s
M

with similar inequalities holding for ∂tSn, n ≥ n0. The norm of �̊−1 in H̊s is bounded
according to Lemma 3.3. Since norms in H̊s

M, and H̊s are equivalent, the norm of �̊−1 in
H̊s
M is bounded too. This implies the statements of the lemma for q. Taking into account

that the operator ∂t commutes with �̊−1 and 0 and using Lemma 7.6 we obtain the
statements for ∂tq. �
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Here are our main statements on the Maxwell equations (7.42).

Theorem 7.8. Assume that Conditions 1.1 and 1.2 are satisfied with s ≥ 2. LetRQ,CQ,
R′
Q,C

′
Q be the same as in Lemma 7.7,

Rq = min
(
RQ,R

′
Q

)
, Cq = CQ + C′

Q. (7.45)

Let T > 0, J ∈ L1,0

(
[−∞, T ; ] ; H̊s

M

)
,

‖J‖
L1

(
[−∞,T ;];H̊s

M

) =
∫ T

−∞
‖J (t)‖H̊s

M
dt < δ0, (7.46)

where δ0 ≤ Rq/8 is small enough for the following condition to hold:

1 + T <
Rq
(
8δ0Rq/Rq

)1−n0

2Cq
. (7.47)

Let U0 ∈ CT
0,H̊s

M

= C0

(
[−∞, T ] , H̊s

M

)
be given in terms of J by (7.40). Then there

exists a uniquely determined analytic operator U (U0) in the space CT
0,H̊s

M

such that

U = U (U0) gives a solution to Eq. (6.21) and (7.36). In addition to that, ‖U‖CT
0,H̊s

M

< RQ

and q (U) is well-defined. The solution U expands into series

U (t) = U (U0) (t) = U0 (t)+
∑
n≥n0

Un (U0) (t) ,

(7.48)‖Un (U0)‖CT
0,H̊s

M

≤ CGR
−n
G ‖U0‖nCT

0,H̊s
M

, n ≥ n0,

where CG,RG are as in Theorem 4.8 and RF = Rq, CF = (1 + T )Cq, γL = 1. The
operators Un, n = 1, 2, ... satisfy the following recursive formulas:

U1 is the identity, Un (·) =
∑

m≥n0, n1+···+nm=n
Rm

(Un1 (·) , . . . ,Unm (·)
)
, n ≥ n0,

(7.49)

where Rm are the relevant terms of the analytic function R defined by (6.21), (6.28)
with qn defined by (7.37). The first significant term Un0 , the first nonlinear response, in
(7.48) is represented by

Un0 (U0) (t) = U0 (t)− qn0 (U0) (t)+
∫ t

0
e−iM̊(t−t

′)∂t ′qn0 (U0)
(
t ′
)
dt ′ (7.50)

= U0 (t)− i

∫ t

0
e−iM̊(t−t

′)M̊qn0 (U0)
(
t ′
)
dt ′. (7.51)

Proof. Lemma 7.7 implies that the Maxwell equation (7.36) is a particular case of
the abstract Maxwell equation (6.16). The conditions of Theorem 6.3 where Rq and
Cq are given in (7.45) are satisfied. By Theorem 6.3 there exists an operator U ∈
A

(
CG,RG, CT0,H̊s

M

, CT
0,H̊s

M

)
, and, hence, (7.48) holds. This theorem implies that U =

U (U0) is a solution of (7.42). According to Lemma 6.2, U is a solution of (7.36). For-
mulas (7.48)–(7.51) follow from (6.25)–(6.27) in Theorem 6.3. The formula (7.51) is
obtained from (7.50) using integration by parts. �
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Now we give the proof of Theorem 1.3. Note that since U0 =
(
∂t + iM̊

)−1
J, where(

∂t + iM̊
)−1

is a linear bounded operator in CT
0,H̊s

M

(see Lemma 6.1) analyticity and

power expansions in terms of U0 imply also the analytic dependence with corresponding
power expansion with respect to J.

Proof (Proof of Theorem 1.3). The existence of B,D ∈ C0 ([−∞, T ] ; Hs) that solve
(7.42) follows from Theorem 7.8, and, hence, (B,D) = U (U0) and ∂tB, ∂tD belong to
C0
(
[−∞, T ] ; Hs−1

)
. We define E = S (D) as a solution of (1.8) with already found D,

according to Lemma 7.5 E ∈ C0 ([−∞, T ] ; Hs), ∂tE ∈ C0
(
[−∞, T ] ; Hs−1

)
. In turn,

the function H is defined by (1.7) in terms of B. A pair of functions B,E is a solution of
(2.13), (2.14), (2.15) and (D,B,E,H) ∈ C0 ([−∞, T ] ; Hs) is a solution of (1.1), (1.2),
(1.7), (1.8), (1.6) from the class considered in Definition 2.2. Since B,E are unique by
Theorem 2.4 and D,H are uniquely determined by B,E from (1.7), (1.8) the solution
is unique. �

8. Extension to More General Cases

8.1. General dielectric media. When analyzing nonlinear dielectric media we assumed
for the sake of simplicity that the medium is not magnetic with the magnetic perme-
ability µ = 1. In fact, all the results still hold if the medium is a general bianisotropic
(magnetoelectric), inhomogeneous and nonlinear medium with the material relations
more general than in (1.8), namely of the form (see [29], Sect. 1.1)

V (r, t) = �(r)U (r, t)+ KNL (V) (r, t) , U =
[

D
B

]
,V =

[
E
H

]
, (8.1)

where � = �(r) , r ∈ R
3 is a Hermitian 6 × 6 matrix (not necessarily of the form

(2.11)) and KNL is the nonlinear component of the material relations. The expressions
for KNL are of the form similar to (1.12), (1.13):

KNL (U) =
∞∑
n=n0

Kn (U) , n0 ≥ 2, Kn (U) = Kn (U, . . . ,U) , (8.2)

Kn (U) =
∫ t

−∞
· · ·
∫ t

−∞
Kn (r; t − t1, . . . , t − tn; U (r, t1) , . . . ,U (r, tn))

n∏
j=1

dtj ,

(8.3)

Kn (r; τ1, . . . , τn; ·) :
(
C

6
)n → C

6, n ≥ n0.

Note that like in Lemma 7.5 it is easy to show that (8.1) is equivalent to the relation

V (r, t) = �(r)U (r, t)+ QNL (U) (r, t) . (8.4)

The Maxwell equation can be written in the same operator form as (7.36), namely

∂tU (t) = −iM̊ [U (t)+ q (U) (t)] − J (t) , (8.5)
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where

U ∈ C0
(
[−∞, T ] ; Hs × Hs

)
, (8.6)

M̊ is defined by

M̊ = i∇̊××
�, ∇̊×× =

[
0 ∇̊×

−∇̊× 0

]
, [�V] (r) = �(r)V (r) , (8.7)

and the nonlinearity is given by

q (U) =
∞∑
n=n0

qn (U) , qn (U) = i�̊−1
(2)
0 Qn (U) . (8.8)

We assume that �(r) satisfies the following condition.

Condition 8.1. Let �(r) be a positive definite Hermitian 6 × 6 matrix, which is a mea-
surable function of r and satisfies (3.6) We also assume that there exists an integer s ≥ 2
such that

‖�‖Cs(R3) < ∞,

∥∥∥�−1
∥∥∥
Cs(R3)

< ∞. (8.9)

An examination of the arguments shows that the statements of Theorem 7.8 still hold
for the general Maxwell equations (8.5)–(8.8) provided that the linear generalized polar-
ization�(r) satisfies Condition 8.1 and the nonlinear generalized polarization KNL (U)
satisfies Condition 1.2 where Pn are replaced with Kn.

8.2. Coefficients from Sobolev classes. The smoothness requirements on dependence on
r of the medium coefficients ε (r) and Pn (r, ·)were imposed in Conditions 1.1 and 1.2.
The conditions are formulated in terms of the spaces Cs

(
R

3
)

of s times continuously
differentiable functions, namely they require that ε ∈ Cs (R3

)
and Pn ∈ Cs (R3

)
. These

conditions can be relaxed allowing the coefficients to be in the local Sobolev spaces
WBs2

(
R
d
)

of bounded functions defined as follows. The space WBs2
(
R
d
)

consists of
functions that are locally in Ws

2

(
R
d
)

with the local Ws
2-norms being uniformly bounded,

namely

‖V‖2
WBs2(R

d)
= sup

y∈Rd

∑
0≤l1+...+ld≤s

∫
|r|≤1

∣∣∣∂l11 . . . ∂
ld
d V (r + y)

∣∣∣2 dr, s = 1, 2, . . . .

(8.10)

The following statements are proven in [6].

Lemma 8.2. Let s > d/2, f ∈ Ws
2

(
R
d
)
, g ∈ WBs2

(
R
d
)
. Then

||fg||Ws
2(R

d) ≤ C1 ||f ||Ws
2(R

d) ||g||WBs2(R
d) , (8.11)

where C1 depends only on s and d.
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Lemma 8.3. Let f be an h-linear tensor in R
n with coefficients that depend on the

variable r ∈ R
d . Assume that the coefficients belong to WBs2

(
R
d
)

with s > d/2. Then

for g ∈ (Ws
2

(
R
d
))h

,

‖f (g1, ..., gh)‖Ws
2(R

d) ≤ C2C
h−1
3 ‖f ‖WBs2(R

d) ‖g1‖Ws
2(R

d) ... ‖gh‖Ws
2(R

d) , (8.12)

where C2, C3 depend only on s, n and d.

The following lemma shows that the spaces H̊s and H̊s
M are equivalent when � ∈

WBs2.

Lemma 8.4. Let s ≥ 2, ‖�‖WBs2
< ∞. Then (3.42) is still true.

Proof. According to (3.7) the inequality (3.42) has the form

c− ‖V‖H̊s×H̊s ≤
(

M̊sU, �M̊sV
)

L2
+ (U, �V)L2

≤ c+ ‖V‖H̊s×H̊s . (8.13)

By (3.6) inequality (8.13) is equivalent to

c′− ‖V‖H̊s×H̊s ≤
(

M̊sU, M̊sV
)

L2
+ (U,V)L2

≤ c′+ ‖V‖H̊s×H̊s (8.14)

with c′−, c′+ > 0. Since infinitely smooth functions that belong to ∩lH̊l are dense in
H̊s , it is sufficient to prove (8.14) for such functions V. By (3.21) M̊sU =MsU, where
M is the same as in Lemma 8.6, therefore the � -dependent part of (8.14) coincides
with (MsU,MsV)L2

. By Lemma 8.6 it depends continuously on � in WBs2
(
R

3
)
. By

Lemma 3.4 (8.14) holds for� ∈ Cs (R3
) ; sinceCs

(
R

3
)

is dense in WBs2
(
R

3
)
, passing

to the limit in (8.14) we obtain (8.14) for � in WBs2
(
R

3
)
. �

In our results concerning the Maxwell equations the condition ε,Pn ∈ Cs (R3
)

that
requires continuity of s− th order spatial derivatives of the coefficients can be relaxed to
a less restrictive condition ε,Pn ∈ WBs2

(
R

3
)

that requires local square integrability of
the derivatives. The exact statements are given in Theorem 8.5; their proof is based on
Lemmas 8.2, 8.3, 8.6 and 8.4. The proof of Lemma 8.6 is rather technical and is given
after the proof of Theorem 8.5.

Theorem 8.5. Let s ≥ 2. Assume that Conditions 1.1 and 1.2 hold with the following
quantities being replaced: ‖ε‖Cs by ‖ε‖WBs , ‖η‖Cs by ‖η‖WBs , ‖Pn‖Cs by ‖Pn‖WBs ,∥∥Ṗn∥∥Cs by

∥∥Ṗn∥∥WBs2
. Then the statements of Theorems 1.3 and 7.8 are true (with mod-

ified constants RQ,CQ, R′
Q,C

′
Q).

Proof. The proofs of Theorems 1.3 and 7.8 are based on the properties of the linear
Maxwell operator M̊ and the nonlinearity PNL described by Lemmas 3.4 and 7.3,
respectively. By Lemmas 8.2 and 8.3 the inequality (7.6) can be replaced by

‖Pn‖Hs ,Hs ≤ Csγ
−n
1 ‖Pn‖WBs2

. (8.15)

Hence,
∥∥Pn,ν (·; τ ; ·)∥∥

Cs
in Lemma 7.3 can be replaced by

∥∥Pn,ν (·; τ ; ·)∥∥WBs2
with a

modified γ. According to Lemma 8.4 the inequality (3.42) of Lemma 3.4 holds too.
Therefore the statements of Lemmas 3.4 and 7.3 can be applied in this case and Theorems
1.3 and 7.8 hold too. �
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Lemma 8.6. Let M = ∇×× ◦ �, where ∇×× is defined by (3.5), � = �(r) is a
6 × 6 matrix with smooth r-dependent coefficients from Cs

(
R

3
)
, let V ∈ ∩sHs . Then

(MsV,MsV)L2
continuously depends on the matrix � in the metric of WBs2

(
R

3
)

for
s ≥ 2.

Proof. Let us introduce

h (�1, ..., �2s) =
(

s∏
i=1

(∇××�i
)

V,
2s∏

i=s+1

(∇××�i
)

V

)

L2

, (8.16)

where �i , i = 1, ..., 2s are matrices with entries from Cs
(
R

3
)
. Obviously, hs (�) is

a 2s-linear form of �i , i = 1, ..., 2s. The continuity of this form is equivalent to its
boundedness. Note that using Leibnitz formula we can obtain the following representa-
tion:

s∏
i=1

(∇××�i
)

V =
∑
|β|≤s

Aβ (�1, ..., �s) ∂
βV, (8.17)

where Aβ (�1, ..., �s) is a matrix of the form

Aβ (�1, ..., �s) =
∑

K1�1...Ks�s (8.18)

and Kj are matrix differential operators with constant coefficients of order nj ≥ 0
satisfying

n1 + ...+ ns = s − |β| , (8.19)

and the number of terms in the sum depends only on s.
To prove boundedness of (8.16) we substitute (8.17) into (8.16) and get

h (�1, ..., �2s) ≤ C
∑
|β|≤s

hβ (�1, ..., �2s) ,

(8.20)
hβ (�1, ..., �2s) =

∫ ∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ ∣∣∂βV
∣∣2 dr.

Let φ0 (r) be an infinitely smooth, nonnegative function such that

φ0 (r) ≥ 0, φ0 (r) = 1, as |r| ≤ 3, φ (r) = 0, as |r| ≥ 6. (8.21)

Notice that the supports of all functions φ0 (r − l), when l runs the set Z
3 of 3 -dimen-

sional integer valued vectors cover the entire R
3. We also use the function

φ1 (r) = φ0 (r/ (6)) . (8.22)

Clearly, φ1 (r) ≥ 1 when φ0 (r) 	= 0, therefore there exists a constant C (s),

sup
|α|≤s

∣∣∂αφ0 (r)
∣∣ ≤ C (s) φ1 (r) , r ∈ R

3. (8.23)
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In addition, let

�(r) =
∑
l∈Zd

φ2
0 (r − l) , �1 (r) =

∑
l∈Zd

φ1 (r − l) . (8.24)

�(r) ,�1 (r) are infinitely smooth periodic functions, �(r) ,�1 (r) ≥ 1. Note that

hβ (�1, ..., �2s) =
∑
l∈Zd

∫
φ2

0 (· − l)
�

∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ ∣∣∂βV
∣∣2 dr

≤
∥∥∥∥ 1

�

∥∥∥∥
C0

∑
l∈Zd

∫ ∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ ∣∣φ0 (r − l) ∂βV (r)
∣∣2 dr.

We consider one term in the above sum∫ ∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ ∣∣φ0 (r − l) ∂βV (r)
∣∣2 dr. (8.25)

When s − |β| < 3/2 we use Holder inequality with

1/p + 1/p′ = 1, 3/ (2p) = 3/2 − (s − |β|) (8.26)

∫ ∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ ∣∣φ0 (r − l) ∂βV (r)
∣∣2 dr

≤
(∫

|r−l|≤6

∣∣Aβ (�1, ..., �s)
∣∣p′ ∣∣Aβ (�s+1, ..., �2s)

∣∣p′
dr
)1/p′

�β1 , (8.27)

where

�β1 (φ0 (· − l)V) =
(∫ ∣∣φ0 (r − l) ∂βV (r)

∣∣2p dr
)1/p

. (8.28)

When s − |β| ≥ 3/2, we take p′ = 1 and
∫ ∣∣Aβ (�1, ..., �s)

∣∣ ∣∣Aβ (�s+1, ..., �2s)
∣∣ ∣∣φ0 (r − l) ∂βV (r)

∣∣2 dr

≤
∫

|r−l|≤6

∣∣Aβ (�1, ..., �s)
∣∣ ∣∣Aβ (�s+1, ..., �2s)

∣∣ dr
′
�β2 (8.29)

with

�β2 (φ0 (· − l)V) = sup
|r−l|≤6

∣∣φ0 (r − l) ∂βV (r)
∣∣2 . (8.30)

In both cases using the Sobolev embedding theorem and (8.23) we obtain for �βi,
i = 1, 2, the estimate

�βi ≤ C
∥∥φ0 (· − l) ∂βV (r)

∥∥2
Hs−|β|(Bl)

= C
∑

|α|≤s−|β|

∫ ∣∣∂α (φ0 (r − l) ∂βV (r)
)∣∣2 dr
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≤ C1

∑
|α|≤s

∫
φ1 (r − l)

∣∣∂αV (r)
∣∣2 dr.

When s − |β| < 3/2 using again Holder inequality with 1/q1 + ...+ 1/q2s = 1 we get
(∫

|r−l|≤6
|K1�1...Ks�s |p′ |Ks+1�s+1...K2s�2s |p′

dr
)1/p′

≤
2s∏
i=1

(∫
|r−l|≤6

|Ki�i |qip′
dr
)1/(p′qi)

=
2s∏
i=1

‖Ki�i‖Lqip′ (Bl) . (8.31)

We take

1

qi
= ni

n̄
, n̄ = n1 + ...n2s , (8.32)

where ni are from (8.19); 1
qi

= 0 corresponds to the L∞ norm of Ki�i (it coincides

with the C0 norm since Ki�i (r) are continuous). By the Sobolev embedding theorem
(see [42, 35] ) in the domain

Bl =
{

r ∈ R
3: |r − l| ≤ 6

}
, (8.33)

‖V ‖Lp(Bl) ≤ C (p) ‖V ‖Hl(Bl)
, − 3

p
≤ l − 3

2
, 1 ≤ p < ∞, (8.34)

‖V ‖C0(Bl)
≤ C ‖V ‖Hl(Bl)

, 0 < l − 3

2
. (8.35)

By (8.19) n̄ = 2s − 2 |β| and by (8.26) 1/p = 1 − 2 (s − |β|) /3, therefore

3

qip′ = 2 (s − |β|) ni
n̄

= 2 (s − |β|) ni
2s − 2 |β| = ni , (8.36)

and since s > 3/2

3

qip′ = ni < ni + 3

2
− s. (8.37)

Applying (8.34) with l = s − ni we get from (8.31),
(∫

|r−l|≤6
|K1�1...Ks�s |p′ |Ks+1�s+1...K2s�2s |p′

dr
)1/p′

≤ C′
1

2s∏
i=1

‖Ki�i‖Hs−ni ≤ C′′
1

2s∏
i=1

‖�i‖Hs .

By (8.19) we get
(∫

|r−l|≤6

∣∣Aβ (�1, ..., �s)
∣∣p′ ∣∣Aβ (�s+1, ..., �2s)

∣∣p′
dr
)1/p′

≤ C2

s∏
i=1

‖�i‖Hs(Bl) ≤ C3

s∏
i=1

‖�i‖WBs2(R
3) .
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Therefore

hβ (�1, ..., �2s) ≤ C4

s∏
i=1

‖�i‖WBs2(R
3)

∑
l∈Zd

∑
|α|≤s

∫
φ1 (r − l)

∣∣∂αV (r)
∣∣2 dr

= C4

s∏
i=1

‖�i‖WBs2(R
3)

∑
|α|≤s

∫
�1 (r)

∣∣∂αV (r)
∣∣2 dr

≤ C5

s∏
i=1

‖�i‖WBs2(R
3)

∑
|α|≤s

∫ ∣∣∂αV (r)
∣∣2 dr

= ‖V‖2
Hs(R3)

C5

s∏
i=1

‖�i‖WBs2(R
3) .

After summation in β we obtain boundedness of h (�1, ..., �2s) which implies the
continuity of the 2s - linear form h (�1, ..., �2s) . �
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