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Abstract: We study the basic properties of the Maxwell equations for nonlinear inhomo-
geneous media. Assuming the classical nonlinear optics representation for the
nonlinear polarization as a power series, we show that the solution exists and is unique
in an appropriate space if the excitation current is not too large. The solution to the
nonlinear Maxwell equations is represented as a power series in terms of the solution of
the corresponding linear Maxwell equations. This representation holds at least for the
time period inversely proportional to the appropriate norm of the solution to the linear
Maxwell equation. We derive recursive formulas for the terms of the power series for
the solution including an explicit formula for the first significant term attributed to the
nonlinearity.

1. Introduction

One of the motivations of this work is the growing interest in the theory of linear and
nonlinear photonic crystals which are man-made periodic dielectric media, see [2, 7, 8,
12, 13, 18, 20, 24, 25, 30, 31, 36, 37, 41, 44, 47, 50]. In [5] we developed a framework
for a consistent mathematical treatment of nonlinear interactions in periodic dielectric
media. This paper provides rigorous proofs of the basic properties of nonlinear inho-
mogeneous Maxwell equations used in [5], including the existence of “well behaved”
solutions for sufficiently long times. In addition, we consider here not only periodic but
general inhomogeneous media.
We consider classical Maxwell equations ([27], Sect. 6.12)

VxE(,t)=—0B(r, ) —4n)p(r,1), V-B(r, 1) =0, (1.1)
VxH, ) =D, 1)+4x)p (. t), V-D(r, 1) =0, (1.2)

where H, E, B and D are respectively the magnetic and electric fields, magnetic and
electricinductions, and J p and J g are excitation currents (current sources),r = (1, 2, 3).
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It is assumed that the Maxwell equations (1.1) and (1.2) are written in dimensionless
variables. We also assume that there are no free electric and magnetic charges, i.e.

V- Jp@x,t)=0, V- Jp(r,t)=0, (1.3)

that is fully consistent with (1.1) and (1.2). Notice that Egs. (1.1) and (1.2) require the
fields B and D to be divergence free at all times. Following to our approach in [5] we

use the excitation current
- 47‘[.]]_)
J = (47IJ3) (1.4)

to produce non-zero solutions to the Maxwell equations (1.1) and (1.2), in particular
wavepackets. We assume that J (¢) vanishes for negative times, i.e.

Jp (@, 0)=Jp(r,1)=0,1=<0, (1.5)
and we look for solutions satisfying the following rest condition:
D(@r,t)=E(,t)=H(r,t)=B(,t) =0 for r <0. (1.6)

The dielectric properties of the medium are described by the constitutive (material)
relations between the fields E, D, H and B, which can be nonlinear. For simplicity we
consider the nonmagnetic media, i.e.

B(,t)=pH(@,t), p=1. (1.7)
The constitutive relations between the fields E and D are of the standard form
D(@,t) =e()E(,t) +4nPnL (E (1, 1)), (1.8)
where
e =1+47xV @), r=@1,r.r3), (1.9)

is the electric permittivity tensor (dielectric constant) describing the linear properties of
the medium with x () (r) being the linear susceptibility tensor, and 47 Py (E) is the
nonlinear component of the polarization total polarization P.

The electric permittivity tensor & (r) is assumed to satisfy the following condition.

Condition 1.1. The 3 x 3 matrix & (r) with complex entries &, (r) is a Hermitian matrix,
ie €, (r) =€y (r), re R3. It is bounded and positive definite, namely it satisfies
for some constants e+ > e_ > 0 the following inequalities:

3
e-leP< ) emn@epen<erlel, reR, e=(eee3)eC. (110
m,n=1
The dependence of € (r) on r is sufficiently smooth. Namely, there exists an integer
s > 3/2 such that € (r) and its inverse 5 (r) = e~ (r) have continuous, bounded over

R3 derivatives of order up to s, that is as a function of ¥ they have the following norms
bounded:

(1.11)

lellescesy - e~y <0
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We allow e (r) to be Hermitian with complex entries, rather than simply real
symmetric, since such permittivity tensors occur for a general dielectric (gyrotropic)
media (see, for instance, [16] p.86 and [29], p. 49). We also allow for Pnr. (E) a general
analytic dependence in E (-),

o
PaL(E)= ) Py (E"), ng =2, Py (E") =P, (E.... .E), (1.12)
n=ny
with P, (Eq, ..., E,) being a n-linear operator that acts on functions E; (r, ). The

leading term of the degree ng > 2 in the nonlinear polarization Pnr, (E) in most of the
applications is either quadratic, no = 2, or cubic, ng = 3, [10, 11].

Following the classical nonlinear optics (see [11], Sect. 2) we assume the n-linear
operators P, (E) in (1.12) to be of the form

Py (E) (r,1)
t t n
:f / P,(r;t—1t,... .t —t,; E(r, 1), ... ,E(r,t,,))l_[dt/,(l.IS)
—00 —00 . ’
j=1
3\" 3
P,(r;1q,... ,rn;-):((C) — C°, n > ny.
The function P, (r; 71, ..., Ty; €1, ... , €,), which is a n-linear form (tensor) acting on
el,...,e, € C3 is called the polarization response function of the order n. For fixed r
and 7; the quantity P, (r; 71, ..., T,; €1, ... , €;) isan-linear function of e; with values
in C3. The Fourier transform of P, in (71, ..., 7,) is called the frequency dependent

susceptibility tensor of the order n. We recall that the representation (1.13) takes explic-
itly into account two fundamental properties of the medium: the time-invariance and the
causality, [11], Sect. 2. We refer to the series (1.12), (1.13) and the analytic function it
defines as causal. Causality implies that P, (E) (-, 1) depends only on EW/) (-, ;) with
t;y <t.

! Note that (1.2) contains 9;D and by (1.8) the equation implicitly involves 9;Pnr. (E).
According to (1.12) and (1.13) the time derivative 9,Pnr, (E) equals the sum of terms of
the form

Py (E) (r,1) = ,Pn,nfl (E) (r,1) + Pn,n E) @, 1), (1.14)
Pn,n—l (E) (I‘, t)

n t t
=Z/ f Pn(r;t—tl,...,O,...,t—t”;E(r,tl),...,E(r,t,,))l—[dtj,
j=1 Y~ —00

j#
Pu.n (E) (r, 1)
t t .
=/ / Py(rit—ti,... .t =t E@ n), ... E@.) [ [at;.
—00 —00 j
where
n
Bty ytyy )= Pu (6, .oty ) (1.15)
=1

and Py (r; 11, ...1,; ) is the derivative of the tensor P, (r; 11, . ..1,; -) with respect to
t;. From (1.14) one can see that to provide the regularity of the multilinear operators we
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have to impose proper conditions on the time derivatives of the kernels P, (r; t1, .. .%,; -)
as well as their values at the boundary faces #; = 0. The conditions on the polarization
response functions (tensors) P, = P, (r; T ) from (1.13) have to imply that the series
(1.12) and a similar series for 9; (Pn1 (E)) converge. Here is the condition imposed on
the polarization response functions.

Condition 1.2. For every n > ng the tensor valued functions
P=P,(r;T), reR T =(1,...,7) e RY, (1.16)

and their first time derivatives Pnl (‘; ?) with respect to 1, | = 1, ...,n, have the
following properties:

(i) they belong for every fixed T to the space C* (R3) , § > 2, consisting of s times,
continuously differentiable, bounded functions of r ;
(ii) tensors P, (-; ?) and Py, (-; ?) as elements of the space C* (R3) continuously
depend on T € R’ up to the boundary IR ;
(iii) P, (r; ?) satisfy the causality condition

Py(r; T)=0, T eR"—R",reR (1.17)

(iv) there exist constants Bp > 0, Cp > 0 such that P, and Pn in(1.14), (1.15) satisfy

L ke +ole)a®+ [ inle d® < coppr. as)

n n—
n 3

Note that R’i is the set of vectors from R" with nonnegative components 7; > 0,
j = 1,...,n. The (n — 1)-dimensional boundary 8”_1R’}r of this set is the union of n
faces f; = {T e R% : ; = 0}.

A typical and rather common in optics example of the response function is

pn(r;?;—e):{ SXP{_GZL‘”]P"(“?) fall; 200 1 p9)

otherwise

where p, (r; 7) is a n -linear form of € € ((C3)n , 0 > (1is a constant.

We study solutions {H () , E (), B () , D ()} to the Maxwell equations on the time
interval —oo < t < T, T > 0. The solutions are continuous bounded functions of
time ¢, taking on values in the Sobolev space H® with an integer s > 3/2 and such
that (1.6) holds. Using common notations we denote the corresponding Banach space
of such functions by C({ s = Co ([—00, T]; H*). The full list of functional spaces and
other related concepts is provided in the next section. Solutions of (1.1), (1.2), (1.7) and
(1.8) are assumed to have time derivatives from Cy ([—oo, T1; H‘Y_l). Under natural
assumptions, such as Condition 1.2, the series (1.12) converges in a ball in the Banach
space Cq ([—oo, T]; H*) and determines an analytic function PNt (E (+)) of E (¢). Since
PnL includes integration with respect to time, its time derivative d; (Pnp (E (+))) also
belongs to Co ([—oo, T]; H*). All differential operators and functions in (1.1), (1.2) and
(1.8) are well-defined for such solutions (a detailed definition of a solution is given in
Definition 2.2). In the following sections we discuss in detail the relevant concepts and
properties of functions analytic in Banach spaces. We also analyze a special class of
analytic functions arising in the classical nonlinear optics for which P is defined by
(1.13).
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In this paper we assume the space dimension d = 3. The space dimension d = 1 or
d = 2 when the coefficients and the fields do not depend on r», r3 or r3 respectively. In
these cases our results hold too, moreover, the condition s > 3/2isreplacedby s > d /2.

Using common notations (see the next section if needed) we can formulate one of
our main results as follows.

Theorem 1.3. Let s > 3/2 and Conditions 1.1 and 1.2 hold. Then the series (1.13)
converges for |E| ¢, (=00, 71;H5) < Rp, where Rp depends on Cp, Bp in (1.18). Let
JeLipg([—oo,T]; H®) and

C
Iz, (=00, :7) <6 <80, 14T < ST (1.20)
0

where the constants C, 8y depend on ngy and the constants Cp, Bp, lle (-)lcs (R3) €~
&+ from Conditions 1.1 and 1.2. Then there exists a unique solution

W, t)= D 1),B(x ), E ), H 1) e Co ([—oo, T1; (HS)Z) (1.21)

with |El ¢y ((—co,71:05) < Rpt0Egs.(1.1),(1.2),(1.6),(1.7), (1.8). This solution W (r, t)
is an analytic function of J and it can be represented by a convergent power series

W=Wwdh=) WD, (1.22)

n=no

where W, is an-linear operator. The operators W, can be explicitly expressed in terms
of Py by recursive relations (7.49) (see Theorem 7.8).

The proof of Theorem 1.3 is given in Sect. 8. More detailed statements are provided
by Theorem 7.8 and Lemma 7.4. We would like to remark that the proof of the existence
of solutions as well as the studies of their properties (see [, 6]) are based on the reduction
of the system (1.1), (1.2), (1.6), (1.7), (1.8) to the problem (7.36) for divergence-free
variables D, B.

The primary focus of this paper is on the following subjects: (i) the existence and the
uniqueness of the solution to the nonlinear Maxwell equations (1.1), (1.2), (1.6), (1.7),
(1.8) for large time intervals; (ii) the representation of solutions in the form of convergent
series involving causal operators. The proofs of the existence and the uniqueness provide
a basis for a more detailed nonlinear interaction theory along the lines of [5, 6]. Our
choice of the theory of analytic functions in infinite dimensional spaces as a technical
tool is motivated primarily by the representation of the nonlinear polarization by the
series (1.12), (1.13) which is standard in classical nonlinear optics. In addition to that,
it turns out that the analytic approach based on representations of type (1.12), (1.13),
(1.22) has additional advantages. In particular, it allows to give a rigorous meaning to
some frequency-dependent nonlinearities, see [6] for details. It also allows to consider
general nonlinearities as long as we can control their magnitude. In particular, we do
not impose any specific structural conditions, such as the symmetry or skew-symme-
try, sign conditions, etc., on the nonlinear tensors. Series expansions with the resulting
analyticity naturally yield a rather constructive description of the solutions in the form
common in the physical literature. Another important incentive for using the analytic
functions approach is its usefulness in further analysis of the solutions, including their
asymptotic approximations, when the excitation currents J (¢) are nearly monochromatic
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wave packets, [5], with relative frequency bandwidth o = % — 0. It turns out, [5],

that o determines a naturally arising “slow time” t = pt. It also follows from [5] that to
analyze solutions of the Maxwell equation as o — 0, 1 — oo with T = ot being fixed,
one needs uniform with respect to o approximations of the solutions as functions of the
excitation currents J (7). The analytic function approach and series representations allow
to get that kind of approximations.

To carry out the analytic function approach to the construction of the solutions we
need to properly recast the original Maxwell equations (1.1), (1.2). This recasting is
done in two steps.

The first step is to choose the divergence-free fields D (r, 7), B (r, ¢) as the primary
field variables. When changing the variables we keep in mind that the nonlinear polari-
zation has the form (1.12), (1.13) implying that for any instant ¢ the field D (r, ¢) depends
on all the values of the field E ( t ) for prior times ' < ¢. This is one of the factors
which has to be taken into account for the choice of functional spaces, namely, the
spaces C ([—oo, T']; ‘H) with a suitable Hilbert space . An analysis shows that the
choice of a suitable function space H of functions V (r) of the position variable r should
be based on the following considerations. First, if U (r, ) is a solution of the relevant
linear Maxwell equations, U (r, f) must remain in 7/ at all times, and, more than that,
the norm ||U (-, #)||4y must remain bounded as time evolves. This property is important
for the control of the magnitude of an H -valued solution for large time intervals that
is crucial for existence on such intervals. The second condition on H is that the multi-
linear forms (1.13) must be continuous in . This requires that 7{ must be closed with
respect to the pointwise multiplication of functions. For instance, the space L, of square
integrable functions is definitely not suitable. We show that the space H = wa with
integer s > 3/2 introduced in Sect. 3 has both required properties.

The paper is structured as follows. In Sect. 2 we introduce function spaces, give a
definition of a solution of the nonlinear Maxwell system and prove Theorem 2.4 on
the uniqueness of such a solution. The equivalence of norms generated by the linear
Maxwell operator and Sobolev norms and related issues are discussed in Sect. 3. In
Sect. 4 we give necessary definitions and facts from the theory of analytic operators
(functions) in Banach spaces. Then we provide the proof of the related Implicit Function
Theorem with particular emphasis on explicit constructions of polynomial operators and
explicit estimates on the radius of convergence of relevant power expansions. In Sect. 5
we consider the case of causal multilinear operators generalizing (1.12), (1.13). It is the
most technical part of the paper. In Sect. 6 we consider Maxwell equations in a general-
ized operator setting. Section 7 is devoted to an integral form of the Maxwell equations
involving only bounded operators. We call it a regular integral form. The reduction to
this form essentially uses the fact that the nonlinear polarization is given by causal inte-
gral operators of the form (1.12), (1.13). Then we prove results for the original Maxwell
equations (1.1), (1.2), (1.6), (1.7), (1.8), in particular Theorem 1.3 and more detailed
statements such as Theorem 7.8.

2. Function Spaces for Solutions

In this section we define suitable function spaces for solutions to Maxwell equations and
introduce notations.

2.1. Notations and function spaces. Below we provide a list of common and a few
special notations needed for our analysis.
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% = 80” 8“2 80” where 9; is the partial derivative with respect to the space coordi-
nate r; and o= (al, a2, a3) is a multiindex with «; being nonnegative integers and
la| = o1 +ap + as.

L, (R?) = L, (R3, C¥) = L, the Hilbert space of 3-dimensional vector fields v (r)
with the scalar product

3
u,v) = f u*(r)v (r) dr = / U-v(r)dru-v= Y ujvj, @2.1)
R3 R3 -
j=1
where U is a vector with components complex conjugate to the components of u, and
u* = is the vector adjoint of u and for a vector (column) u the notation uT stands for
a vector transposed to it. We will also use the notation & for a matrix transposed to the
matrix €. If we have a term uv, where u and v are matrices or vectors then vectors are

treated as corresponding matrices and uv is understood as a standard matrix product. In
our problems v (r) can be, for instance, the electric or magnetic field.

I, (R3) = I, is the subspace of Lo (R3) consisting of the divergence free
3-dimensional fields, i.e. the subspace of Ly (]R3) orthogonal to all the fields of the
form grad ¢ (r), where ¢ (r) € C5° (R?).

I is the L;- orthogonal pI‘OJeCtIOI’l operator on L.

=1L, ><L2,L2 =T, x L.

H; (R3) q =H%s=0,1,2,...,is the Sobolev space of g-dimensional vector
fields (or n-linear form (tensor) fields that are vectors of dimension ¢"). For vector fields
V() = {V, r:1<j< q}, r € R3 (index ¢ = 3, 6 will be often suppressed) the
Sobolev norm

IVIZ, = Z/ |8°‘V(r)| dr, (2.2)

la|<s

with 0% = 97"95205°, la| = a1 + a» + 3 and

V2 =v-v=[ul 4. + v 2.3)

being the standard Euclidean norm of a vector v € CY. For a n-linear form (tensor) field
V (r; -) of tensors acting on vectors e € C9 the Sobolev norm ||V||%p is given by (2.2),
where the norm of a n— linear tensor V' = 9%V (r) is given for any given «, r by

V|= sup  [Vi(er, ... e) (2.4)

ler]=...=lex|=1
with |e i | being the standard Euclidean norm of a vector e; € C9.
H = H3 N I, and
lallg = llullps, weH. (2.5)

C; = C([—00,T];Y), where Y is a Banach space, is the space of Y — valued
functions y (¢), —oo < t < T, with the norm defined by

Iylgr = sup My ®lly - (2.6)

—oo<t<T
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In particular,
Cﬂx = C ([—oo, T]; H*), T > 0, is a Banach space of H*-valued continuous trajec-
tories U (¢), —0o < t < T in H® with the norm

IUllc(—oo, 7115y =  sup U @) llgs - 2.7)

—oo<t<T

C()T,HS = Co([—o00,T];H*), T > 0, is a Banach space of H*-valued continuous
trajectories U (¢), —oo < t < T, such that U (r) = 0, —oo < ¢ < 0 equipped with the
norm (2.7).

C({Y = Cp ([—00, T]; Y) is defined similarly for a Banach space Y.

E)T, = L ([—00, T]; Y) is the space of Y -valued functions of r € [—00, T'] that are
square Lebesgue integrable; the norm in L}Z is defined by

T
10112, = U ()13 dt. (2.8)
yulh -

Ly o ([—00, TT; Y) is the subspace of functions j from L ([—oo, T]; Y) such that
j@)=0,—00 <t <0.
L1 ([—oo, T; Y]) is the space of Y -valued functions of ¢ € [—oo, T'] with the norm

T
Ly (—o0.7:7) =f0 |17 ()] at" (2.9)

Ly o ([—oo, T]; Y) is the subspace of functions j from L ([—oo, T]; Y) such that
j@)=0,—00 <t <0.

Cs (R3) = C% s = 1,2,..., is the space of s times continuously differentiable
vector fields or n-linear form (tensor) fields. The function norm in C* (R3) is defined by
the formula

IVles = sup  [3°V (r)], (2.10)

le|<s, reR3

where for a vector 9%V (r) with given &, r the norm [0%V (r)| is determined by (2.3) and
for a n-linear form (tensor) field the norm [0¢V (r)| of a tensor 9%V (r) is determined
using (2.4).

H), is a Hilbert space consisting of the 6-dimensional fields from L% but with the
modified scalar product that includes a positive definite Hermitian matrix n (r) of the
form

(U, V)g,, =/H;3U(r) "E@V(r)dr, E ) = [”(()r) (1)} U= [g] @2.11)

Under the condition (3.2), which will be imposed on 7 (r), the norm ||-||g,, is equivalent
to the Lo-norm ||-||p,.

The space Hy, consists of the 6-dimensional fields from L% with the scalar product
(2.11),

(U, V)n,, = (U, V)ﬁM . (2.12)

Hj‘,[ are the spaces generated by the linear Maxwell operator; they are considered in
Sect. 3, see (3.7).
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2.2. Solutions and their uniqueness. To study the uniqueness problem we express D in
terms of E using (1.8). Equation (1.1), (1.2), after taking into account (1.7), (1.8), turn
into

VxE,t)=—8B(r,t)—4n)p(r,1), (2.13)
VxB(r,t) =edEr 1) +4n8,Pn (B) (r, 1) +4ndp (r, 1),  (2.14)
V.B(r,t) =0,V (eE + 47Px1 (E)) (r, 1) = 0. (2.15)

Itis assumed that Jp, Jp € L1,0 ([—o0, T]; H®) for an integer s > 3/2. We impose the
following condition on the nonlinearity Pnp. (E).

Condition 2.1. We assume that the nonlinear operators Pyy, (E) and 8,;Pyp (E) are de-
fined for ||E||or < Rp with Rp > 0 and an integer s > 3/2. For every T\ € [0, T]
HS

they satisfy the Lipschitz condition

T
fo 119:Paz. (E1) (1) — 9Pz, (E2) (0130 di

T
<KL fo 11 (1) — Ea (1)1 30 di (2.16)

T
foreveryEj,Ey € CO,HS such that ||E; HC}TIA‘ , ||E2||C£S < Rp.
Now we are ready to define a solution to (2.13), (2.14), (2.15).

Definition 2.2. A pair of functions B (r, t), E (r, t) is called a solution of (2.13), (2.14),

(2.15) if for some T > O we have B € C({HS = Co([—00, T];H*), E € C({H.r =

Co ([—o0,T]; H®), 9B € COTHH, oE € C()THH with s > 2 and ||E||C}1rp < Rp.
The corresponding quad D (v, t), B (r,t), E(r,t), H(r,t) with H(r,t) and D (r, 1)
determined respectively by (1.7), (1.8) is called a solution to (1.1), (1.2), (1.6), (1.7),
(1.8).

Note that the curl V* and the divergency V- are bounded operators from H* to
H*~!, and when they are applied to functions of (r, 7) they become bounded operators
from Cly; = C ([—o0, T1; H¥) to C}TF_, . Therefore for ||E||CI§T < Rp the left-hand and

right-hand sides of (2.13), (2.14), (2.15) are well-defined as elements of CIEH .
The next lemma provides a sufficient condition for Condition 2.1 to hold.

Lemma 2.3. Let Condition 1.2 hold. Then Condition 2.1 holds, and Rp = Rp (Bp) is
the same as in Lemma 7.4, Rp depends only on Bp from Condition 1.2.

Proof. The statement follows from Lemma 7.4. 0O

The following theorem shows that Condition 2.1 (and consequently Condition 1.2)
implies uniqueness of solutions.

Theorem 2.4. Let Condition 2.1 hold together with (1.10) and all conditions from
Condition 1.2 with only one exception, namely (1.11) holds for s = 0. Let Jp,Jp €

C()TH" and suppose that B1, E; € Cy ([—oo, T]; H2) and By, Ey € Cy ([—oo, T]; H2)

are two solutions to (2.13), (2.14). Then B1 = By, E; = E».
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Proof. Note that by Definition 2.2 the solutions satisfy |[E1||or < Rp, |[Eallor <
HS HS
Rp, 3,B; € CT »E, e CT By e CT »E, e CT Therefore the

()’Hx—l ’ 0,H571 ’ O,HS’I ’ 0,H“71 .

difference B3 = B — By, E3 = E| — E; of the solutions satisfies the system
e~ (V x B3) = 9,3 + 4me ™' 9; (PnL (E1) — Paw (E)) (2.17)
V x E3 = —0,B3, (2.18)

E; € Cy ([—oo, T]; H2) . Now we, first, dot-multiply Eqgs. (2.17) and (2.18) by respec-
tively €TE3 and —B3, and then add up them, integrate in r and ¢ and take the real part.
We have

/[Eg-VxB3—§3-VxE3+E3-Vx§3—B3-VXE3]dr=0, (2.19)
hence, for 71 < T,
Ty o Ty _
Re/ / (E3 -e0,E3 + B33¢B3) drdt = Re/ /E3 - g@drdt, (2.20)
PSS 0

g =40, (PnL (E1) — P (E2)) . (2.21)

Let us introduce

N (E,B,T) = /(E.sEJrE.B) dr

= IE, B (2.22)
=T M

9EseCl  BsecCl

where the norm ﬁM is defined in (2.11). Since 8;,B3 € CT OH! OH2’

0,HD
E; € COT 2 and e is Hermitian we have

T o _ 1
Re/ f (E3 -e0;E3+ B3 - atB3) drdt = EN (Es3, B3,T1) . (2.23)
—o0

Then we estimate the right-hand side of (2.20) using (1.10) as follows

/Eg,-gzdr

IA

1
5 (I3 )1 + lle2 01130 )

IA

1
5 11Es (0l + 27 / |3 [PNL (E1) () — Pp (Eo) (1)]]7 dr.
(2.24)

Based on Condition 2.1 we get
T T
/O f 13, [Pyw. (E1) (1) — Pap (B) (0] drdr < K, /O B I3 dr. (225
According to (1.10) we have

- |[E3 ()0 < N* (B3, B3.1). (2.26)

Now combining (2.20) and (2.23), (2.24), (2.25) and (2.26) we obtain

T
N2 (E,B.T)) < (l+4n2KL> 8:1/ N2 (E.B.r) dr. 2.27)
0
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Applying the Gronwall inequality to the estimate (2.27) we get for 77 > 0,

N? (B3, B3, T) = N* (Bs, By.O)exp [ (1+47°K, ) e='Th | 228)
Since N2 (E3, B3,0) = 0, the inequality (2.28) implies N2 (E3, B3,71) = 0 and,
consequently E3 =Bz =0. O

Remark 2.5. Note that the proof of the uniqueness of solutions does not use the diver-
gence-free condition (2.15), which is very essential for the proof of their existence.

The proof of the existence uses areduction of (1.1), (1.2), (1.6) and (1.8) to an integral
equation for the divergence-free fields B and D considered in Sect. 7.

3. Linear Maxwell Operator

In this section we consider some important properties of the linear Maxwell equations.
In the linear case (1.8) takes the form

Er,)=n@®D, 1), n)=[em", (3.1)
where the Hermitian matrix 5 (r), called the impermeability tensor, satisfies the inequal-
ity

sjrl le|? < i Emn (T ehen <l le|?, reR eeC?, (3.2)
m,n=1
as it follows from (1.10). Based on (1.7), (3.1) we rewrite Egs. (1.1),(1.2) in the form
U@)=—iMU(@)-J@); U@F)=0forr <0, (3.3)
where
U:[g},Mzi[_voanOX]VXB=V><B,J=471[‘}§], (3.4)

and 5 denotes the operator of multiplication by 5 (r). We write the linear Maxwell
operator M in the form

M= iV**g, VXX:[ 0 VX]

-V 0
[EVI)=E@mV(r), E(r) |:17(()r) (1):| , (3.5)

where V* is the curl operator. In view of (3.2) we have

a_lg <E(@) <ayls, Tre R3, with Ig being 6 x 6 identity matrix (3.6)

and o4 = max (1, 8:1) , 0_ = max (1, 8;1) . We introduce now the scale of Hilbert

spaces Iflf\,[, s = 0,1,..., consisting of divergence free (3 4+ 3)-dimensional vector-
fields V(r) with the scalar product
(U, V)I:FM = (MU, MSV)ﬁM +U, Vg, »5=01,..., 3.7

where (U, V)ﬁM is defined by (2.11). Evidently, (U, V)ﬁ% = 2 (U, V)I:IM. In the fol-

. . . © 5
lowing subsections we study properties of the spaces Hj,.
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3.1. Spaces of divergence-free fields. We consider the standard Hilbert space L, =
L, (R3 , (C3) of Lebesgue square-integrable 3-dimensional complex-valued vector fields
in R3, and we consider a subspace ig of L, which is the closure of all smooth vector
fields from L, with zero divergence. We denote by I1j the Ljy-orthogonal projection
operator onto L. The space L., can be equivalently defined as a space of all the fields
orthogonal to every field of the form grad ¢ (r), where ¢ runs the space C° (R3) (the
set of infinitely differentiable scalar functions with finite support). The space L., can be
explicitly described in terms of the Fourier transform F which is given by the following
formula

Ak) =T (A) (k) =

1 .
(27T)3 ‘A\%} eilk.rA (r) dl‘,

Am=F'1A)= / ¢®TA (k) dr. (3.8)
R3
Note that
97A (k) = i""IKYA (k) , k* = kKRS (3.9)

By Plancherel’s theorem

—1 2 _ ~ 2
2m)2 /Rs A ()] dr—fR3 A (1] dk. (3.10)

Hence the Sobolev norm (2.2) can be written in terms of the Fourier transform as

Al = 27)*? /R3 3 k1A @0 dk. (3.11)

o] <s

An equivalent norm is given in terms of the Fourier transform by
IAIS = @) / (1K + 1) 17 ) (o) ak. (3.12)
Obviously,
e I1AlGs < IAI7 7 < cu Al - (3.13)
According to (3.9) the image .71042 of the Fourier transform F is:
Fl, = {A(k) €Ly:A®K) -k =0 foralmost all k € R3} . (3.14)
By (3.12) the space H* consists of functions
{U € Ly: (Ikl2 + I)S/zf(U) (k) e Ly, k- F(U) (k) = O} . (3.15)

The projection I in terms of the Fourier transform is written explicitly for every k as
the orthogonal projection in C3 of a vector A (k) onto the plane k - A (k) = 0, i.e.

1= s a2 K-AK)
Iy = F I F, IMHA (k) = A (k) —(k, k) k, (3.16)
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and the curl operator takes the form

~ X

vV =FW'F, ¥

X

A k) =ik x A (k). (3.17)
Evidently,
1'[(2) =Ty, V Iy =yV* = VI = V*. (3.18)
Since ‘I:IOA (k)‘ < ’;& (k)| for every K, the operator I1g has norm 1 in both norms (3.12)
and (2.2) for every s,
[TTollgs s = 1. (3.19)

For any operator K acting in L, we introduce an operator K = MoKl that acts in
L, C L», in particular,

§v = HopIlgv = Moyv, v e ]:2. (3.20)
Notice that (3.16)—(3.20) imply
MoK Ty = KMy, V' Iy = V*Iy = VX, Ally = Allp. (3.21)

Notice that if the medium is homogeneous and isotropic, i.e. E = I, then the
Maxwell operator has constant coefficients and Maxwell equations can be solved explic-
itly in terms of the Fourier transform determined by (3.8). In this case ellipticity of the
curl operator V* on divergence free fields can be shown to be elementary using (3.17).
According to the well-known property of the cross-product we have

kx (k xA k) =—k*AK) + (k-AK)k (3.22)

and, hence,

‘@Xi(k)‘z = (k x A (K)- (k xX(k))
=—(kx(kxA®))-Ad) =|Aw®| - k>—]|(k-A1)[.

Since k- A (k) =0 for A € 122, the Sobolev norm in (3.12) coincides on ﬁzx ﬂz with
the norm defined in terms of the curl operator V**:

1012 7 = [|(V<)" U], + i, (3.23)
~ xx\9 2
= | U(v ) FO®| +1F W) (kﬂ dk,

and by (3.13) this norm is equivalent to the norm in (3.12), i.e. there exists a finite
positive constant cg such that

G IUIR, = [[(V) UI[E, + U1 < cu IR, - (3.24)

An analogous property for the case of variable coefficients is given in the next subsection
(see (3.41), (3.42)).
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3.2. Maxwell operator with variable coefficients. When coefficients of the matrix » are
variable we consider the linear Maxwell operator M :

M is the restriction of M = V**E to[p x o, M = V** & (3.25)

with V** and E = E (r) defined in (3.5). The operator M is self-adjoint in Hy,, namely
the following well-known lemma holds (for the proof see [9, 17]).

Lemma 3.1. Assume that: (i) 5y (r) is a 3 x 3 Hermitian matrix that satisfies (3.2); (ii)
N (r) has bounded measurable coefficients (in particular, it is sufficient that n () €
ol (R3) ). Then the operator M is self-adjoint in the space Hyy with the scalar product

defined by (2.11), the domain ofM is H! xﬁl, H' being defined by (3.15).
The following lemma plays an important role in our analysis of the nonlinear

Maxwell equations, in particular it is used to estimate the norms of 3 and ﬁ_l that
are included in the nonlinearity according to (7.35).

Lemma 3.2. Let s > 0 be an integer, and 3 (r) € C® be a 3 x 3 Hermitian matrix
satisfying (3.2). Then there exist positive constants c+ = c+ (s) such that

<cy IVl velr. (3.26)

e IVl < Jiv]l g <

The operator 1 in H* has a bounded inverse ﬁ_l, Hf]_l H < ¢=!'. In addition to that,

there exist positive constants ¢, such that

vl = [(9) [+ v, = ¢ vl (327)
Proof. Let us show first that the statement of Lemma 3.2 holds for s = 0, namely
e IVlg, < v, <e='Ivlg,, vela. (3.28)
It follows from (3.2) and (3.20) that# satisfies for v € 122 the inequality

(v, v)p, = (Tlpv, IoV)y,

A

< &4 (ITpv, pIpv)y, = &4 (v, HonIlpv)y, = e+ (V,iiv)i2 .

Note thatij is a bounded self-adjoint positive operator in L, and there exists the square
root \/1; which is a bounded positive self-adjoint operator too. Taking v = \/ﬁu we get
for any u € I, the inequality

et (Viwivim), = (Viw viu), = (wiu); > @y . (3.29)
Lz L2 2 2

therefore for any v € Lo,

iv(i, = Gvav);, = e (v, (3.30)

We also derive from (3.2) that (gv, 17V)]:2 < g2 (v, V)]:2 and obtain (3.28).
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Let us consider now 9% (nv) for a multiindex « such that |«| < s. According to (3.9),
(3.16) operators * commute with I1p and we have

3% (4v) —#d%v = Il [8* (yv) — nd*v], forv e H'. (3.31)
The relations (3.19) and (3.31) evidently imply the inequality
o (o N o o
|8% Gv) —@a*v];, < [ (av) — na*v], . (3.32)
It follows from the Leibnitz formula applied to 3* (yv) that the difference 0% (yv) —nd*v
will involve only the partial derivatives of v and 7 of respective order not exceeding s — 1

and s. Combining this observation with (7.8) and the interpolation inequalities (3.64)
we get the estimate

|9% @v) = na*v| L < Inlles (e IVIms + Coe IVIIL,) (3.33)

which holds for any 0 < ¢ < 1 with a constant C,  depending only on indicated
parameters. For v € H* evidently ||v|]lgs = [Vl and, hence, (3.33) implies

[ vy = 0¥ [, < Wnlles (& IVl + Coe IVl ) . 0 <& < 1, ve . (334)

Considering now#9%v we notice that (3.28) implies

ex' [0y, = Mo*v[y, = =" |a*v]y, . (3.35)
and, consequently,
ex? Y ovlE, = X loevli, <e22 > Joovl;,. (3.36)
lo|<s lal<s la|<s

Combining (3.32), (3.33) and (3.36) we obtain

c—Ivllge = lIvlly, + Z 18% Gv) g, < e+ IVl (3.37)

la|=s

with constants c+ depending only on s, €1 "and [Imllcs. The last inequalities readily
imply the inequalities (3.26). By (3.30) the null-space of7 is trivial andﬁ_1 is bounded
on the image ofij; since is self-adjoint in L, (3.30) implies that the image of#j coincides
with L, andif1 is a bounded operator defined on L. Boundedness of 1771 in H* follows
from (3.26). To deduce (3.27) from (3.26) we apply (3.24). O

Let H(()z) be the orthogonal projector from L% onto L% ie.

@ (D[ _ | D
][] .
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Lemma 3.3. Let s > 0 be an integer; E (r) € C°® be a 6 x 6 Hermitian matrix satisfying
the condition

E_ I <E(r) <&l where &L >&_>0,reR>. (3.39)
Then & = I'I(()z) Ef[(()2) satisfies on L% the following inequality analogous to (3.26):
av

e IVl g < < Vg g » VEH x Y, (3.40)

HI-?SXI-'IS

and

o s o
NVl = (V) &V

2
it ||V||f:% < MVllgs g - (34D

1

! EilH <c .

The operator E in H® x H® has a bounded inverse 2",

The proof of Lemma 3.3 is analogous to the proof of Lemma 3.2.

The following statement on the equivalence of the Hilbert spaces H§v1 and HS x H*
generalizes (3.24).

Lemma 3.4. Suppose that n (x) satisfies all the conditions of Lemma 3.2 and the

operator M is defined by (3.25). Then for any integer s > 1 there exist positive constants
c+ such that

- IVliggips < 1Vl < e IVlg i V € H' x H'. (3.42)

The proof of Lemma 3.4 together with some auxiliary statements are subjects of the
next subsection.

3.3. Abstract Sobolev spaces and the spaces equivalence. Notice that for integer values
of s > 0 the spaces H* and A x H° are generated respectively by the linear self-adjoint

N Ky ° o s o
operators [VX] in L, and [iVXX] in L%. Indeed, it follows elementarily from the
relations (3.8)—(3.18) that

o T or = [ =79 | (343

where A is the Laplace operator. From (3.24) we obtain that

o s 2
H IVIE, 4 < H(v) Vi TIVIE <enlVIg b G44)
2

To relate the Hilbert spaces Hfu and H* x H® when n (r) is not constant we use
the concept of abstract Sobolev spaces generated by powers of linear operators, [49],
Chapter 19.26. Namely, for a self-adjoint operator B in a Hilbert space H we consider
its power B*, s > 1 and equip its domain D (B®) = H ps with the graph norm and scalar

product
N3y = IBSull + ul®, @, v)pe,, = (Bu, Bv) + (u, v). (3.45)
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We recall that for a linear operator B its graph G (B) is defined as the set of all pairs
{u, Bu} when u runs the domain D (B) of the operator B.
In view of (3.24) the norm equivalencies (3.24), (3.44) can be recast as

o5 [¢ ) )
0= [Lz][vx} CH xH [Lz] [W”] . (3.46)
It is also evident, in view of (3.7) and (2.11), that

i, = [Lg] (3.47)

M

Hence, to show the equality of 0 x B to Ifljh, which is the statement of Lemma 3.4,
it is sufficient to verify that

[I‘L%]Ms - [I‘L%]Ms . (3.48)

The following abstract results are developed to establish (3.48).

Let us recall the basic concepts related to closed operators. For any linear operator
B we consider, its domain D (B) is assumed to be dense in the Hilbert space H with the
norm |||l = Illl . A linear operator B is called closable, [28], Sect. III. 5.3, if and only
if

u, € D(B), u, — 0and Bu,, - v imply v = 0. (3.49)

The closure B of a closable operator B has the graph G (B) which is defined as the

closure G (B) of the graph G (B). For a closed operator B a set D is called its core if
the closure of the restriction B on D is the operator B itself.

To deal with powers, products and sums of unbounded operators we introduce the
following definitions.

Definition 3.5. Let By, B, ... , B, be linear densely defined operators acting in H. We
define the product B = B1B; - - - B, as a linear operator B acting naturally as

Bu = By (B2 (... (Bpu))) foru € D(B), (3.50)
where its domain D (B) is defined as the set of u such that
ueD(Bp),BuueD(Bp-1),...,B2(...(Bau))u € D(By). (3.51)
If the domain D (B) is dense in H we call the product B densely defined.

Definition 3.6. Let By, B, ... , B, be densely defined linear operators. Then the sum
B = By + - - - + By, acts naturally as

Bu=Biu+---+ Byu, (3.52)

where the domain D (B) = D (By) N ---ND (By,). If the domain D (B) is dense in H
we call the sum B densely defined.
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Clearly the most important parts of the above definitions are the domains of the
product and the sum, since the operators of interest are unbounded. One can easily ver-
ify that the above definitions are consistent and correct in the sense that the domains
of the product and the sum are independent of how we group operators when forming
the product and the sum. In particular, D (B (B2 B3)) = D ((B1 B») B3) with a similar
equality holding for the sum.

To establish the identity of Hilbert spaces H p generated by different operators B we
introduce the following definition.

Definition 3.7. We call two linear closed operators By and B equivalent and write
By ~ By if D(B1) = D (B») and there exist positive constants y—_, Y+ 0 < y— < y4,
such that for any u € D (B»),

y- (1Bl + 1l?) < 1Bl + Nl < s (1Bl + l?) . (3.53)

If By and Bs are linear operators defined on a dense domain D, at least one of By, By is
closable, and the inequalities (3.53) hold for any u € D, then we write By ~ By on D.

The following statement is useful for the verification of the equivalency of a two
linear operators.

Lemma 3.8. Let By and By be densely defined linear operators, and, in addition, B, be
closable. Suppose that a set D C D (B1) ND (By) is a core of By. Suppose also that
there exist positive numbers oy and B+ such that for any u € D,

a_ | Boull® — B llull® < I Biul® < a | Boull®> + B lull®. (3.54)

Then the following statements hold:

(i) the inequalities (3.53) and (3.54) are equivalent, and (3.54) implies (3.53) with

v =max (e, 1+ fi)andy_ = min{a_, p — B} /B, where p = fi+p_+1;
(ii) By is closable, By ~ By on D, and By ~ By including, in particular, D (Bl) =

D (By);
(iii) if we replace in the inequalities (3.53) and (3.54) By and B; respectively with B
and Bj these inequalities will hold for any u € D (Bl);
(iv) if B1 ~ By on D then both operators are closable and By ~ By;
(v) the relation By ~ Bj between closed operators is an equivalency relation.

Proof. We begin with the statement (i). Indeed, (3.53) evidently implies (3.54). To show
the opposite implication we set § = B4+ + B_ + 1 and, using the right-hand side of the
inequality (3.54), obtain

|Buull® + l® < 1Baul + (1 + B ull® < s (B2l + ul?) . (3.55)

where Y4 = max {a4, 1 + B4}. Then using the left-hand side of the inequality (3.54)
we get

B (1Bl + 1ul?) = 1Bl + B lul® = - | Boull® + (B = B-) lul®  (3.56)
implying, in turn,

1Biul? + Bl = - (1Bl + lul?) (3.57)



Nonlinear Maxwell Equations in Inhomogeneous Media 537

where y_ = min {o_, 8 — B_} /B. This completes the proof of (i) and we may assume
from now on that (3.53) holds.

Let us consider the graphs G (Bi|p) and G ( Bz|p) of the corresponding restric-
tions of the operators By and B; to the set D. The inequalities (3.53) imply that for any
sequence u, € D we have

||, — “”HBI — 0 if and only if ||u, — uIIHB2 -0 (3.58)

and, in addition to that,

v (o2l + lul?) = o+l < s (o2l + Jual?) . 3.59)

where vi = lim Bju,, v, = lim Bju,.
n—oo n—oo

Notice now that since B is closed, then if u = 0 then, v = 0 and, in view of (3.59), we
may conclude that v; = 0, implying that B is closable and G (Bl) = G (B1|p). Since,
according to the lemma conditions, D is a core of B, we also have G (Bz) = G (Bz|p).
Observe now that (3.58) implies: D (B1) =D (Bz); the inequalities (3.54) hold for
anyu € D (Ez). Hence, in accordance with Definition 3.7, we have By ~ By on D ,
Bi ~ B, and (ii) and (iii) are proven.

The proof of (iv) is based on the same arguments as the proofs of the statements
(1)—(iii). The statement (v) follows from (i)—(iv) completing the lemma’s proof. O

Definition 3.9. Suppose that B and C are closed and densely defined operators. We say
that C is subordinated to B, and write C < B, if D (B) C D (C) and for every positive
& < 1 there exist a positive B such that for any u € D (B),

ICull®> < & || Bul®* + B lull®. (3.60)

If C and B are linear operators defined on a dense domain D and the inequalities (3.60)
hold for every positive ¢ < 1 and every u € D, then we write C < B on D.

To verify the subordination of two operators we will be using the following statement.

Lemma 3.10. Suppose that B and C are closable operators defined on a dense set D
and that the inequalities (3.60) hold for every positive ¢ < 1 and every u € D. Then
C < B.

Proof. The proof follows immediately from Definition 3.9 and closability of B and C
onD. O

Now we prove a few technical statements.

Lemma 3.11. Suppose that operators B and C are closable on a dense set D, and that
C < BonD. Then B + C is also closable on D and B + C ~ B on D.

Proof. The condition C < B on D implies for any u € D,
ICull®> < & || Bul®> + B lull®. (3.61)

Observe now that for any two vectors v, w € H the following elementary inequalities
hold:

3
Z o> =4 wl* < [vlI* =2 vl lwll < llv+wl* <2[vI* +2[wl*. (3.62)
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Combing (3.61) with (3.62) we get
3
(Z — 48) | Bull> — 4B llull® < |Bu+ Cull> < 2+ &) | Bull® + B¢ llull®, (3.63)

which together with Lemma 3.8 (i), (ii) imply that B+ C is closableon D and B+C ~ B
completing the proof. O

Recall now the following interpolation inequalities relating the L;-norms of the
derivatives of different orders (see [15], Chapter IV, Sect. 7, Corollary 4 or [19], Sect. 7,
Theorem 7.27): for every ¢ > 0 there exists C; (¢, d) such that for0 < s’ < s,

Null s < & llullgs + Cs (e, d) Nlull o, u € H® (Rd). (3.64)

In our case of the fields and functions over the entire space R? the inequality (3.64) can
be readily verified using (3.12), (3.13) together with the following elementary inequality,

K> <&k +C2(), 0<s <5, (3.65)

which holds for an appropriately chosen constant Cs (¢). Using in a similar way the
inequality (3.65) together with the standard spectral decomposition in place of the Fourier
transform, one shows the validity of the following natural generalization of (3.64).

Lemma 3.12. Let B be a self-adjoint operator and 1 < s’ < s. Then D (Bs/> DD (B%)

and for every positive ¢ < 1 there exist a positive B . such that

||u||${BS/ < ¢ llullzy,, + B llullzy, u € D(B’)and B* < B. (3.66)

In addition to that, the restriction B’ '

B is closable on D (B?®), its closure is exactly

/

B*, and
BY < B onD (B), 1 <s" <s" <. (3.67)

Theorem 3.13. Let s > 1 be an integer, B be a self-adjoint operator and D = D (B®).
Suppose that A is a bounded operator such that AD C D, and that BSYA~ B onD
forevery 1 < s’ <s. Suppose also that | <m < s and sy, s2, ... ,Sy > | are integers
suchthatsy +---+s, =5 <s. Then

B = (B*1A) (B®2A)--- (B A) ~ B onD, (3.68)
including the fact that D (B) D D. In particular,
(BA)SI ~ B onD foreveryl <s' <s. (3.69)

Proof. We will refer to the numbers m and s’ in the representation (3.68) for the operator
B respectively as its A-rank m and its power s’.
Let us look first at the domains of our operators. Since B is self-adjoint, we have

B'D = B*D (B') =D (BH’) forany 1 <s' <s. (3.70)
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Based on the given conditions BYA ~ BY on D, AD C D and with the help of
Lemma 3.8 (ii) we may conclude that

B'ADC B'D=D (BS_S/) forevery 1 <s' <. (3.71)

The relation (3.71) readily implies that for every operator B of the form (3.68) it is well
defined on D, i.e.

D(B) =D (BH’) >D(BY) =D. (3.72)

We prove the main statement by the induction with respect to the A-rank m. Observe
first, that the conditions of the theorem evidently imply the validity of (3.68) form = 1.
Suppose now that (3.68) holds for 1 <m < s’ < s, i.e.

B = (B A) (B2A)--- (B A) ~ B" on D, where s’ =51 + ... + s <5, (3.73)
and let us show that it is true then form + 1, i.e.
B = (B1A) By = (B1A) (B2A)--- (B"+A) ~ B onD,  (3.74)
where s” = 5" + sl =51 + oo + Sl < 5.
Using Lemma 3.8 (i), (3.72) and the validity of (3.68) form = 1 we obtain foranyu € D,

a_ |Biul + B 1B ull < [|Bull = | B ABu|
<oy |Blu| + B+ IBull,  where B| = BB, (3.75)

and the constants o4 and B4 are, respectively, positive and real, depending only on B
and s. Notice now that B has the same A-rank m as the operator B, and the power
s” = 5" + spm+1. Hence, in view of the induction hypothesis, the relation (3.73) applies
for the both B and %’1. Using this fact, and once more Lemma 3.8 (i) and (3.75), we
getforany u € D,

BL lull + o

Bs/u” +a”

B"ul < 1%ul

B* uH + o)

|B%u| + B lul, 3.76)

1
<af

where the constants «/] are positive and «/,, B, are real. From (3.76) and Lemma 3.12
we get forany u € D,

B Null + o

"
Bu| < IBull < o

B ul + B i (3.77)

for some positive « and real 8. Based on (3.77), Lemma 3.8 (i), (ii) we get the desired
relation (3.74) that completes the proof of the theorem. O

Now we are ready to prove Lemma 3.4.

Proof (Proof of Lemma 3.4). The statement of the lemma follows from (3.46), (3.47),
Lemma 3.3 and Theorem 3.13 where we set H = 10,2, B=iV > andA=2 O

Remark 3.14. Another way to prove Lemma 3.4 is by constructing a parametrix of the
X

vin VvV

vV 0
theory of pseudodifferential operators, for the exposition of the theory see, for example,
[40, 34]. The proof of Lemma 3.4 we gave above is more elementary.

Stokes-type operator :| using the ellipticity of the operator and methods of the
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4. Analytic Operators and Series Expansions

4.1. Multilinear forms and polynomial operators. The nonlinear analysis of Maxwell
equations requires the use of appropriate Banach spaces of time dependent fields, as
well as multilinear and analytic functions in those spaces. It also requires an appropriate
version of the implicit function theorem. For the reader’s convenience we collect in this
section the known concepts and statements on the above-mentioned subjects needed for
our analysis.

Definition 4.1. Suppose that x1, x2, ... , X, are vectors in a Banach space X. Let a
function F (x), x = (x1, X2, ... , Xp), be defined for all values of the variables x € X"
and take values in Z . This function is called a n-linear form if it is linear in each variable
separately. It is said to be bounded if the norm of F defined by

|Flixz= sup |F (x1,x2,...,x)llz 4.1)

e llx=-.=llxnll x=1

is finite. When the choice of the spaces X and Z is clear from the context, we simply
write | F||.

Definition 4.2. A function P (x) from X to Z defined for all x € X is called a polynomial
in x of degree n if for all a, h € X and all complex «,

P (a+ah) = ZP‘, (a,h)a’, 4.2)
v=0

where P, (a,h) € Z are independent of a. The degree is exactly n if P, (a, h) is not
identically zero. P (x) is a homogeneous polynomial of degree n if it is homogeneous of
degree n,

flax)=a"f(x) (4.3)
and is a polynomial. A homogeneous polynomial is called bounded if its norm
1f1e=sup {If )z} (4.4)
llxllx=1
is finite. For a given n-linear form F, (x) = F, (x1, x2, ..., Xp) we denote by F, (x")

a homogeneous of degree n polynomial from X to Z,
F, (x”) =F,(x,x,...,x). 4.5)

Usually we denote the multilinear operator f, (x) and the homogeneous polynomial
fn (x™) obtained by the restriction to the diagonal x; = x = ... = x, by the same
letter f,,. Obviously,

I fullie < N full - (4.6)

Definition 4.3. Let f,, (x™),m = 2,3, ... be a sequence of bounded m homogeneous
polynomials from X to Z that satisfy the estimate

[fmll < CopRF m=2,3, ... 4.7
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We say that a function f that is defined for || x||x < Ry by the series

F@ =Y fal(x") (4.8)

n=2

is in the analyticity class Ay (C*f, Ryr, X, Z) andwrite f € Ay (C*f, Rir, X, Z) . We
say that g is analyticin X if g = L + f, where L is a bounded linear operator in X and
f e A, (Cf, Ry, X, X)forsome Cr, Ry > 0.

If feA, (C*f, Ryr, X, Z) and [x|lx < Ry the series

S 14 691, “9)

n=no

obviously converges, and, consequently, the series (4.8) converges in the Banach space
Z. In addition to that we have the inequality

S n o el R, 7
If @z < Cap D lIxly R} < Cop——T1—. (4.10)
n=ng ' I- ”x”X R*f

Definition 4.4. If f,, (x),m = 2,3, ..., is a sequence of bounded m-linear operators
from X™ to Z and

I fnll < CrR™,m =2,3...., 4.11)

we say that a function f defined by the series (4.8) for |x|lx < Ry belongs to the
analyticity class A (Cf, Ry, X, Z) and write f € A (Cf, Ry, X, Z) .

When it does not lead to confusion, we write A, (Cis, R«f), A (Cy, Ry) instead of
Ay (Cup, Rip. X, Z), A(Cy, Ry, X, Z).

Note thatobviously A (Cy, Ry, X, Z) C A« (Cy, Ry, X, Z). We often need to find a
multilinear operator generating a given polynomial operator. Since different multilinear
operators G, (x1, ... , X,) may resultin the same polynomial operator G, (x, ... ,x) =
G, (x™), we assume the multilinear operator to be symmetric. It is called the polar form

Gp (x1,x2, ..., x,) of G, (x™). The existence of the polar form and an estimate of its
norm is given by the following proposition (see [26], Sect. 26.2, [14], Sect. 1.1, 1.3 for
details).

Proposition 4.5. For any homogeneous polynomial P, (x) of degree n there is a unique
symmetric ~n-linear form Py, (x1, x2, ... ,Xy), called the polar form of P, (x), such that
P, (x) = P, (x, x, ..., Xx). Itis defined by the following polarization formula:

- 1 n
Pn(-xl’x23"'sxn):2nn' Z Pn Zé]xj . (412)

CE=+1 j=1

In addition to that, the following estimate holds:

n

~ n
1Palle < | 2] < S5 1P (4.13)
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Notice that using an expansion for the logarithm of the Gamma-function, [43],
Sect. 12.33, we get for an integer n > 1,

n" n" n"

— <

e
< = e
n' T (n4 )2 e =128 T Un+ Inte 127 2m (n+ 1)

which, in turn, implies the inequality

Corollary 4.6. If f € A, (C*f, Ry, X, X) then the polynomial operator series (4.8)
can be written in the form

" (4.14)

P,

<" [Pyl (4.15)

o
FO =" fux™), (4.16)
m=n
where fn are m-linear symmetric operators and f € A (C*f, Ryf/e, X, X).
Let us consider now analytic functions of two vector variables (x, z) € X x X. We
define the norm on X x X as follows: ||(x, 2)|lxxx = lIxllx + llzllx- Let Fy, ((x, z)),

m = 1,2..., be a sequence of bounded m-linear operators from (X x X)™ to X, and
assume that F (x, z) defined by (4.8) belongs to A (Cr, Rr, X x X, X). The formula
(4.8) for an analytic operator of two vector variables takes the form

F(x,2)=Y Fu[(x.2"]. xeX, z€X. 4.17)
m=2

The series converges if || (x, 2)||xxx < Rr. When ||(x, 2)|lxxx <r < RF the conver-
gence is uniform. Using the multi-linearity of F,, and splitting (x;, z;) = (x;, 0)+(0, z;),
the m- linear operator on (X x X)™ can be rewritten in the form

Fu (G52) = B (1,200 - (s 20)
= Y F(@x,(0=8021), ..., Guxm, (1 = 8u) zm)), 8 € {0, 1}.
81,..0m

(4.18)

This sum contains 2" terms. Collecting the terms of the homogeneity s in x (and m — s
in z ) we write

Fu (3)) = 2 Frs (519, (4.19)

where F,; is s-linear in x and m — s-linear in z, and, in particular,
Fus (tx572) =" Fips (X3 2) (4.20)
Note that

Fu [, 2] = Fons (x":2"7). 4.21)
s=0

Ay
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We renumerate the variables for every term in (4.18) so that F,,s (x; z) depends only on
X1, ..., Xg and 21, ..., Z;u—s. Clearly, it does not change (4.21) and the norm of every term
in (4. 18) Since the operator Fj, involves ( ) terms from (4.18) (here ( ) = is
the binomial coefficient), its norm can be estimated as follows:

v'(m s)!

m—s

| s (x5 D)l < ( ) | ol H il x H lzillx - (4.22)

Hence, we can recast (4.17) as

Fx,2) =Y Y Fu(x52"7). (4.23)

Lemmad.7. Let F € A(CF, Rr, X x X, X). Then the series (4.23) converges when
lxllx + llzllx < RF and the sums (4.23) and (4.17) coincide.

Proof. By (4.22) and (4.11) we get

il}Fms(x: Wy = CFZ o RE I el

= CFRF (llxllx + IIlex)m

and, hence, the series converges. Since (4.21) holds for every m, the sums (4.23) and
(4.17) coincide. 0O

4.2. Implicit Function Theorem. Let us consider the equation
z=Lx+F(x,2), (4.24)

where L is a bounded linear operator and F (x, z) is a nonlinear operator such that
F (0,0) = 0. We single out the linear part since the norm which estimates the linear
term is somewhat different. Sometimes though it is convenient to include Lx into F
replacing it with a single term Fjx. We seek the solution z (x) to Eq. (4.24) for small
|lx|]. The following implicit function theorem holds.

Theorem 4.8. Let F € A(Cp, Rrp, X x X, X). Then there exists a solution 7 = Lx +
G (x) of (4.24) with G € A4 (CxG, RxG, X, X), G € A (Cyi, Rig/e, X, X) , where

Rp +2Cp —2,/RpCp + C%

R = , ve =1L, (4.25)
. 1+ yL
Cig = Rr (RF+ (1+yL) Rg) — R
*G = %(RF Y Cr) F YL) KXxG *G
< 5 (RF + VLR*G — R.g) . (4.26)

In particular,

G (x) = Z G (x™) for Ixllx < Ruc, (4.27)
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and its norm satisfies

2 p—2
llx 1% R*G

G )lx = Csc —- (4.28)

I—lxlix R

The polynomial operators G, (x™) satisfy the following recursive relations: G| = L,

m j
ZZZ Z Fjs (XS;G[I (x”),... ’Gij—s (x"f”>),m > 2,
J=15=0 ij+-+ij_s=m—s
(4.29)

where F1| = L, Fig =0, Fjs are the same as in (4.23). The operator G (x) is unique
in the classes A, (C, R, X, X),C >0, R > 0.

Proof. Ttis convenient to denote the linear operator L in (4.24) by Fj,i.e. L = F|. Note
that according to (4.23) F; = F11 and F1o = 0 since Lx does not depend on z. Observe
also that the recursive relations (4.29) are obtained by formally collecting terms of the
homogeneity m in x from Eq. (4.24), where z and F are given respectively by (4.27)
and (4.23). In other words they are equivalent to the formal equality

j s

i G (x") = i S F |2 [i G (x")] . (4.30)
m=1 i=0

]=1 s=0

Let us study now the issue of convergence of the series (4.30). First we notice that
G1 = L since (4.30) F11 = L and Fjp = 0. To estimate |G, ||, defined by (4.4) let us
estimate ||G,, (x™)| y for ||x||x = 1. Evidently

1G1 Wllx = IILxlIx <y, vo=ILI. (4.31)

For m > 1 using (4.22) we get

6n b =305 T [ (i () G ()

J=25=0i1++ij_y=m—s
Jj—=s
—J (s
S ZZ > ok () [Tl
J=25=0i1++ij_s=m—s =1

Hence, we have the following recursive estimate:

m ) Jj—s
1Gul =X > ek () TTIGl, m=2.3.... @32
=1

J=2s=0i1++ij_s=m—s

Let us introduce a sequence of majorants g,, by

m ' j—s
g1 = - ZZ > CrRy (j) [Tei.m=2 @33
j=2 =1

s=01ij+-- i jg=m—s
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Obviously,
Gl < gm, m=1,2, ... (4.34)

Then we introduce an auxiliary function
oo
Z(ry=Y_ gnr" (4.35)
m=1

Note that (4.33) can be obtained by equating m™ powers of r from the equation

00 oo J ) o) . Jj—s
Z g™ =yr+ Z Z CFR;] (;) ré |:Z g,-rl:| ) (4.36)
m=1 i=1

j=2s=0

The right-hand side of (4.36) equals

00 00 J 2
—j il ((r +Z(r))/RF)
yr—i—ZCFRF |:r+§g,r:| _yr+CF|:1—(r+Z(r))/RF:|' 4.37)

j=2

Hence, Eq. (4.36) is equivalent to the equation for Z (r) given by (4.35)

2
(r +Z (1) /RF) } . 438)

Z(’):y’+cF[1—<r+Z<r>>/RF

The numbers g, then are the Maclaurin coefficients of the solution of this algebraic
equation. The estimates of g, are provided below in the following Lemma 4.9 where we
set C = Cr, R = Rp, C2 = Cyg, o = Ry« These estimates and (4.34) imply (4.25)
and (4.26). Hence G € A, (C«G, R«G, X, X). Using Corollary 4.6 we obtain also that
G € A(Cyg, Rig/e, X, X).

The sums in m in the left-hand and right-hand sides of (4.29), (4.30) converge, yield-
ing G (x) = Lx+ F (x, G (x)) and, hence, G (x) is a solution of (4.24). From (4.27) and
(4.10) we obtain that for ||x||xy < Ryg (4.28) holds. The uniqueness of G (x) follows
from the fact that if G € A, (C, R, X, X) with C, R > 0 is a solution of the equation
G (x) = Lx + F (x, G (x)) then it must satisfy the recursive relations (4.29). 0O

Lemma 4.9. The analytic solution Z (r) of the equation

B (r+ Z (r)* B
Z(r)_yr+C|:R(R_r_Z(r))j|, Z(0) =0, (4.39)

with constants C, R > 0 and y > 0, expands into the Maclaurin series Zn gnr" with
gn = 0 and the radius of convergence

_ R+2C—-2JCR+C?
= T )

ro (4.40)

The coefficients g, satisfy the inequalities

_ R(R+ro(1+y))
< Cory ", Cp = —ro,n=1,2,.... 4.41
lgnl < Cary 2 TR+ O) ro, n (4.41)
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Proof. Eq. (4.39) is reducible to a quadratic equation
RR—r—2)Z+r—>_0+y)r)=C @+ 2)? (4.42)
that is equivalent to
=¥V RR-2)=CZ Y =1+y, z=r+Z (4.43)

The solution Z (r) that satisfies (4.39) and Z (0) = O corresponds to

R
7(r)= ———— (R +y'r — \/RZ —2y'rR + (y")2r2 — 4y/rC) . (4.44)

By the recursive relations (4.33) all the Maclaurin coefficients g, of Z (r) are non-neg-
ative, g, > 0. The same is true for z (r) = r 4+ Z (r). Notice that the functions Z (r)
and z (r) have the same branching points. The branching points of z (r) are given by the
discriminant equation

R>=2y'rR+ (y)?r* —4y'rCc =0. (4.45)
The branching point g with the minimal modulus is

_R+2C—-2JCR+C? _ R?
14 Y/ (R+2C+2«/CR +c2)

ro (4.46)

that yields (4.40). In as much as the function Z (r) is analytic for |r| < rg and is bounded
for |r| < r, using the Cauchy formula we obtain

lgm| < |max |Z (r)|ry™. (4.47)

r|=ro

Since all g, > 0 the maximum of |Z (r)| over |r| = r’ < rg is attained at a real positive
r = r’. Obviously, z (r) given by (4.44) for |r| < r¢ is continuous and we get

1Z ()| = Z (r0) = 2 (ro) R Ry
max N =2Z@o) =z@o) —ro= —
Irlero 0 VTOT YR+ T 2(R+0)

rQ. (4.48)

According to Theorem 4.8 a solution of (4.24) of the form z = G (x), G €
A, (C, R, X, X) is unique, but more general solutions may be not unique. Though,
the next lemma shows that solutions z are unique if ||z||x + [|x| x is small enough.

Lemma 4.10. Let F € A(Cp, Rr, X x X, X) and 71, 72 be two solutions to Eq. (4.24)
with ||zillx + Ixllx <7, llz2llx + lIxllx <r, v < Rp. If

Cr 1
SR <1 4.4
Rlv[(l—r/lw)2 ]< ’ (49

then zp = z1.
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Proof. Evidently,
lzi — 22l = I1F (x,z1) = F (x, 22)| - (4.50)
Notice then that the following identity holds for an n'" order multilinear form F,:

Fy ((x,20)") = Fu ((x,22)") = Fu (6, 21) 4 oes (%, 21)) — F (%, 22) 5 -, (x, 22))
=Fy((x,21), (x,21) 5 oo, (%, 21)) — F (X, 22), (X, 21) 5 ooy (X, 21)) + -0
+Fy ((x,22) 5 .oy (X, 22), (X, 21) — Fi (%, 22) 5 .0y (X, 22))
=F,((x,z21 —22), (x,21) 5 ooy (x,21)) + ...
+F, ((x,22),...,(x,22), (x,21 — 22)), “4.51)

implying

| B (G, 20)") = Fau (6, 2" |y < nWEll "z —2ally . (452)
Summing up with respect to n the terms in the previous inequality we get

IF(x,z1) — F (x, 22)lIx

oo
<Y " \CrRE" =

n=2

Cr

1
— —1 — . 4.53
Ry [ } llz1 — z2llx (4.53)

(I—r/Rp)?
Hence ||z1 — z2llx < cllz1 — 22llx with ¢ < 1implying [z; — z2llx =0. O

Now let us consider the case when the analytic F' (x, z) is of order ng > 2 at z = 0,
namely

Fx,2)=..=Fy-1(x,2) =0, np > 2. (4.54)
It is convenient to rescale the variables
z=a7, x=ax’, 0<a <1, (4.55)
and to consider the following corollary of Theorem 4.8.

Corollary 4.11. Assume that the conditions of Theorem 4.8 are fulfilled, and, in addition
to that, (4.54) holds. Then for all o« € [0,1], the operator G belongs to
Ay (C;G,, aR.g, X x X, X), where

Rrp + Z(X"O_ICF — 2\/RF05"O_1CF 4 0(2”0_2C%
Ricr = : (4.56)
I+yL

1
;G’ = 5 (RF 4+ LRy’ — Ryg?) - (4.57)

Proof. First, we rewrite Eq. (4.24) in the form
=Lx +a 'F (le/, az’) , (4.58)
and introduce

F'({)=a'F(aZ). (4.59)
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Since
a ' Fy ((a2))") =" Fy ((2)") . n = no, (4.60)
we conclude that

if F e A(Cr, Rp, X x X, X) then F' € A <a”0—1cF, Rp, X x X, X) (4.61)

Note that after rescaling (4.55) the solution z = G (x) of (4.24) takes the form 7/ =
a G (le/) =G’ (x/). Since (4.58) has the form of (4.24), formula (4.25) of Theorem
4.8 gives an estimate (4.56) of the radius R, ' of convergence of the power expansion of
G’ (x').Further, G (x) = aG’ (¢~ 'x) and we obtainthat G € A, (¢Cyg/, @Ry, X, X),
where C,g is defined by (4.26) with Cr replaced by o°~'Cr and, consequently,
Cig' < C.;, where C, , is defined in (4.57). O

Let us consider a slightly more general case than Eq. (4.24), namely, the equation
biz=Lx+ F (x,2), (4.62)

where byis a linear operator and F (x, z) is as in (4.24). When b has a bounded inverse

bl_1 (this is the standard condition of the implicit function theorem), we reduce (4.62)
to (4.24). Namely, we rewrite (4.62) in the form

z=b'Lx +b]'F (x,2). (4.63)

This equation is of form (4.24) with a modified right-hand side, the modified multilinear
operators F? are

Fb=b'F, (4.64)

and the constants Rr, Cr and yy, in (4.25), (4.26) are replaced respectively by
Ror = R, Cor = |67 € = o7 1. (4.65)

Consider now the composition G = F (S1z + S (z)) of two analytic operators.
It is well-known that the composition is analytic (see [26]). In the following theorem
we give an explicit estimate of the radius of convergence of G.

Theorem 4.12. Let F € A(Cp,Rp, X, X), S € Ay (Cs, Rs, X, X), S| be a linear
bounded operator in X and ||S1| < CSRs_l. Let

G (x™) =i YR (S,- (x“),... Sy (w)), G (x) = iGm (x™).

J=lij++ij=m

(4.66)
Then G € A, (Cg, Rg, X, X), G € A(Cg, Rg/e, X, X), where
RrRg CsCr
o= I8 op = Z5EF (4.67)
Rr+Cs Rr +Cs

The operator G (x) coincides with F (S1x + S (x)) for || x|lx < Rg.
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Proof. The formula (4.66) is obtained by collecting terms of the homogeneity m in the
identity G (x) = F (S (x) + S1x). Let us estimate G, (x™) with || x|y = 1:

lon (=2 X m (s () s ()],

J=2i1+-+ij=m
m
<cr Y Rl Y Ry, (4.68)
=0 i1t j=m

For further estimation we introduce majorants

m
gn=Cr Y RFCL S Ry, (4.69)
j=0 ijttij=m

One can see that the right-hand side of the equality (4.69) coincides with the coefficient
at A" of the formal series obtained after substitution of the number series

o0
2 =Cs Y RGN (4.70)
i=1
into the series
m .
f@=CrY R;Z. 4.71)
=0

Both series determine respectively the analytic functions
A 1
W) =CsRy' ———., f@Q=Cr|—]|. (4.72)
s 1w ! "1 r;!

Therefore s, coincide with the Maclaurin coefficients of f (z (1)) which is a rational
function of A :

F(z0)) = CrR [ Rs — % }
S =R RyRs — (Rp + Cs) &
CrRF CrCg 1

:RF+C5 RF+C51—)»(RF+C5)/(RFR5).

The series expansion of f (z (1)) yields g, = Cg Ram, m > 1, where C; and R are
defined by (4.67). Hence

IGmlls < gm < CoRG™, (4.73)

and G € A. (Cg, Rg, X, X). Applying Corollary 4.6 we obtain that G belongs to
A(Cg, Rg/e, X, X). O

Remark 4.13. The condition || S| < Cg Rgl of the previous theorem can be always satis-
fied by decreasing Rg since A, (Cs, Rs, X, X) C A, (CS, R§. X, X) when R < Rgs.
One can treat a general case || S1|| = ys directly as in the proof of Theorem 4.12 using a

more general majorant z (A) and still can get explicit formulas for Rg and Cg, but they
are more involved. For example, the expression for the radius of convergence becomes

2RsR
RG = S°F : (4.74)

Rr +ysRs + \/(RF +ysRs)® + 4RF (Cs — ysRs)
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4.3. Further properties of analytic operators. The operators (functions) in Banach
spaces that we construct in this paper are in the form of convergent series of polynomials.
We consider and study power series primarily at zero, that correspond to the state of com-
plete rest for the medium. Such and more general operators are the subject of the theory
of analytic operators (functions). Many properties of scalar analytic functions of a com-
plex variable can be extended to such vector-to-vector functions. In particular, they are
continuous, complex differentiable. Among other properties, complex analyticity and
boundedness imply analyticity, the Cauchy formula is valid, Taylor series converge in a
neighborhood of a point of analyticity, etc. The reader can find details on the properties
of abstract analytic functions in [26], Sects. 3.10-3.19 and Sects. 26.1-26.7. All these
results are applicable to the analytic operators we construct in this paper.

5. Abstract Causal Power Series

This section provides a systematic analysis of an abstract version of power series similar
to (1.12), (1.13) representing the nonlinear polarization. We will refer to power series
similar to (1.12), (1.13) and the functions they define as respectively causal series and
causal polynomial operators. In the literature (see, for instance, [21], Chapter IV, and
[23], Chapters I and II) the equations involving similar operators are called retarded or
Volterra.

Let us introduce the following notations that are used in the definition of causal
operators:

Ry ={7T eR":71,..., 1, =0}, (5.1

2 =(,...,t), T =(,....,1), E =(Ey,....E,). (5.2)

Let Y be a Banach space. We consider trajectories x = x (¢), —oo < t < T, which
are continuous Y -valued functions of ¢. Let us recall basic definitions of continuity and
strong continuity.

A Y-valued function x (¢) defined on an open interval / C R is called continuous
on [ if for any 79 € I we have lim;_,, [|x (z) — x (fp)|| = 0. Similar definitions of the
continuity and the differentiability are assumed for Y-valued functions x (¢, ... , t,;) of
n real variables.

If f (©) is a bounded n-linear form in a Banach space Y that depends on a parameter
0 from a domain ® in R™, it is called strongly continuous at a point 6 if f () (x) —
f (Bo) (x) as & — Oy for any x € Y". The differentiability and the partial derivatives
in the strong sense are defined in a similar way. Note that when we say that an operator
f (8) depends on 6 continuously we understand continuous dependence in the operator
norm topology (not in the strong sense).

In most applications considered in this paper we have vector functions x (¢), —0o <
t < T that satisfy the following rest condition:

x()=0,1t=<0, (5.3)

and, in this case, it is sufficient to consider the restriction x (¢) for ¢ € [0, T]. It is still
convenient though to keep (5.3) for simplicity in writing integrals such as (1.13) and
their abstract counterparts.

For a given Banach space Y and a positive time 7 we introduce the Banach space
C; = C ([—o00, T]; Y) of bounded continuous Y-valued functions x (¢), —oco <t < T,
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with the norm defined by (2.6) and the Banach subspace C 0.y = Co([-00, T]; Y) C Cy r
of functions x () satisfying the rest condition (5.3). In our problems the Banach space
Y is usually either the Sobolev space H*® or the Hilbert space 3, defined in terms of the
Maxwell operator m. An electromagnetic field at any fixed time is an element of H7,,.
A trajectory x (¢), —oo < t < T, then describes the field evolution up to the time 7.
Let us introduce strictly causal n-linear operators p,, that acton x € (C; )n, and take

values in C; . They are abstract versions of the nonlinear polarization operators (1.13):

pn (x) (1) = f / pnlt — =ty x1 (1), .o X ()] diy -+ - diy
(5.4)
where py, [11, ..., Ty; 2] are Y -valued bounded n-linear forms of
z2=0(21,...,2,) €Y" (5.5)
that continuously depend on (71, ... ,7,) =T € R’j_.We refer to p, as the density forms,

density operators, or just the densities. Evidently, a polynomial form p,, corresponding
to (5.4) is given by

P () (1) = pn (x") (©)
:/ pultt,ccstsx(@—11),...,x( —1)] dry---d1,. (5.6)
Rn

+

Note that the integral operator (1.14) involves integration over faces on the boundary
0"} of the generalized n -dimensional octant R’} . Compositions of such operators could
involve the integration over more general faces and the corresponding presentation of
the operators takes a more general form. To describe this more general form we consider
all the faces of all dimensions on the boundary dR”, . Namely, let

. 1 if 0
s1gn(r)={ 0 if zzo , (5.7)

and let us introduce for v = 0, 1, ..., n the following v-dimensional manifold:

n
"R} = rlZO,...,rnZO:Zsign(rj)zv (5.8)
j=l

with the Lebesgue measure d”t on it. The manifold 3"IR"} is a union of rectilinear faces
f (generalized octants ) of dimension v

FGlwni={reRL:1,>0,..1;, >0, 7;,=0,j#ji,... i}, (59

LGt i) CR Gy o) ={T €R" 115 =0, # j1, oo jiv} - (5.10)
Notice that

"R =R — 3R (5.11)
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Using the notations (5.1), (5.2), (5.8) we introduce for 0 < v < n the following, more
general multilinear forms

/ pnv[? Xp(—=711),...,Xn (t_fn)] d’t
VR

Z /Pnuf ? x1(t—11),..., X (t—r,,)] d’t, (5.12)

fCOVRL

Paw () (1)

where the densities p,,., [?; 7] are n-linear formsin z~ € Y" continuously depending
onty,..., 7 € f CRY, ppy, s is arestriction of p, , to a face f C 3R’ These
operators involve the integration over the faces 3”IR”,, an example of such a form occurs
in (1.14). The corresponding polynomial form is given by

Prs O = oo 0O = [ g [Tix (T =) ] e 63
IRY
We introduce now forms p,, involving the integration over faces of all dimensions

Pu (X1 Xn) = ) P (X1, X)) (5.14)

and the corresponding polynomials

P (X) (1) =P (¥, .- x)(r)—Zf

The form (5.15) can be recast as

pn(x)(o—ZL

which is useful when we differentiate it with respect to time.
It is instructive to look at the simplest case of a general quadratic causal polynomial

e ? x (r‘l’ - ?)] d't.  (5.15)

p,,v t T -2 x(?)] d'r, (5.16)
BIJRYI

t
P2 (0) (1) = pao (x (1), x (1) + /O paas bt — 1, 5% (7)) x (O] dny
t
+/0 prip it — mx (), x ()] doa

t t
+/0 /0 paolt — 11, t — 125 x (1)), x ()] drido. (5.17)

In this case BvRﬁ is a quadrant when v = 2, and the faces of the boundary consist of
the union of two rays f1, f» with v = 1 and one point (the origin) with v = 0. Notice
that the first three terms in (5.17) depend explicitly on x (¢) at the instant r whereas the
fourth term does not, it is strictly causal. The significance of that becomes clear when
we differentiate p, with respect to time. Indeed, the time derivative of the first two terms
involves the time derivative of x (¢) whereas the double integral term does not. Therefore,
the double integral term (strictly causal) provides a priori time smoothness of p2 2 (x) (¢).
Notice that the classical optics representation for the polarization (1.12), (1.13) involves
only such integrals! For this reason we single out as a special class the causal series of
the form (5.4) which involve only volume (the highest possible dimension) integrations.
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Definition 5.1. We call causal the forms and polynomials defined by (5.4), (5.6), (5.13),
(5.14) and (5.15) with the densities py [?; 7] ,v=20,1,..n, that (i) are bounded
n-linear forms in 7 € Y", (ii) continuously depend on T from every rectilinear face
of 0VR}.. The series, forms and polynomials that include only volume integrals as in

(5.4) will be called strictly causal. We extend the forms py., [T;-| for T € R" by
assigning them zero values outside 3"RR",, i.e. we set

Pop [Tl T2t 2] =00f (11, ..., 1) € VR (5.18)

We introduce the norm of a density py_
Ipnsl =Ipnsllyy = [ Aons [ Fellyy e 619
PR

where for every fixed T the norm || pu [T ]| vy

|| DPn.v [?; ] H yy isbounded uniformly in T and we assume that for causal forms the
norm (5.19) is finite:

is given by (4.1); we assume that

|paw| = [ Pasllyy = /aan | Py [T:5-]] 7 < oo (5.20)

Notice that the continuity together with (5.20) are sufficient for the Bochner
integrability of forms with respect to T (see [26], Sects. 3.1-3.93, or [45], Chapter IV).

Note that when (5.18) is fulfilled, the integration in (5.12) over a face f of 9"’} can
be replaced by the integration over a subspace R} that contains f and integrals in (5.12)
after a renumeration of the variables 7 take the form

pn,v,f (xl’ RN xn) (t)
= %;{v pn,v,fI:TI, ceey Ty, Oa eeey 0; X1 (t - Tl) g oo s Xy (t - TV) s Xp+1 (t) )
b
. X (t)]dr” (5.21)
= / Pnv.f [t_ff — T lx (T)+ (I —If)x (t)] dr’, (5.22)
RU
f

where I denotes the projection in R” onto the subspace that spans f.

Lemma 5.2. Let (5.20) hold. Then the operator py., is bounded from (C; )n into C;
for every T > 0 and the norm of this operator defined by (4.1) admits the estimate

Hpn,v “C;C; = ||pn,v H vy " (5.23)
The polynomial operator p,, ,, (x") leaves C({Y invariant, i.e. P,y (C({Y) - COT,Y‘

Proof. Note that 9"R’} consists of (,‘;) different faces f for which n — v variables t;
equal zero, and, hence, the integral (5.12) splits into the sum of (,”1) integrals p,, ., r over
the faces. We estimate first the integral of p,, ,, (x1, ... , x;,) (t) over one of the faces f.
Without loss of generality we assume that for this face 7,41 = ... = 1, = 0 and, hence,
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00 00
P, f (X150, X0) (1) = /0 /0 pn,v,f[tl, ey T, 0, ., 05 x1 (2 —11),
X, (1 — ru)]dndtv, (5.24)
where p,, ., r is the density restricted to the face f. According to (2.6),
|xj =0y < |lx; ”c; fort <T,7>0, (5.25)
and, hence, we have fort < T ,
Ionov. s Gioee o x) @y

x o0
< / / Hpn‘v,f [t o0, T, 0, .., 05 x1 (E—1T1) o, X, (2 — rv)]”ydrl...drv
0 0

o0 o0 n
< /0 /(; ”pn,wf (t1y .0, T, 0, ..., O)H dry...dt, l_[ ij HC§

j=1
n
= pns I TTIxilep - (5.26)
j=1
Since
Ipanl = D lpavsl (5.27)
fCOVRY
then summing up the terms (5.26) over all f C "R’} we obtain
n

lows o5 @1y = sl TT sy (529

j=1

implying (5.23). Since in the integral (5.12) t —7; <t ,thenif x; (t) = Oforz < 0
then p,, , (x1,...,x,) () = 0 for t < 0 and the subspace C&Y is invariant under the
actionof p,,,. O

Now we define a causal power series which is an abstract version of the nonlinear
polarization series (1.12). Namely,

POY= Y pn(x), Pu () =pn (") =pn (x,... . x), (5.29)

nzno

where p,, are given by (5.14).

We call a series (5.29) strictly causal if it involves only polynomials of the form
(5.4). Strictly causal series and polynomials form subsets of respectively sets of the
causal series and causal polynomials, as defined by (5.13), (5.29), and, evidently, are
singled out by the condition

Pny=0if0 <v <n—1foralln. (5.30)

In other words, for strictly causal series and polynomials the only nonzero densities are
Pn.n = Pn. From Lemma 5.2 we readily obtain the following statement.
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Lemma 5.3. Let the densities pp,, satisfy
n
> pasl < Cpy" n=0,.... (5.31)
v=0

Then p defined by (5.29) is an analytic operator, p € A (Cp, By, C;, C;) for every

T > 0. The subspace C({Y is invariant and p € A (Cp, Bp, C&Y, C&Y).

In the next section we consider operators involving time derivatives. The following
statements deal with such operators. First we give an abstract version of (1.14).

Lemma 5.4. Let for an integer n > 1 the form p,, n > 1, be strictly causal (see (5.4)
and Definition 5.1) with a density p, (?; ) = Pn.n (?; ) being continuous and con-
tinuously differentiable in T € R’ up to the boundary 0", and such that

| Brn| < oo, (5.32)

where
Prn (T32) =00, pun (T57).- (5.33)
j=1

Then the composition 9; o p,, = 0:p,, of the form p,, and the time differentiation operator
0; is a causal form with the density py , (?; ) given by (5.33) and

Pun1 (T52) = pu (T3) for @ € 9" 'RY,

Pn,y (?; ) =0for0 <v<n-2. (5.34)

Proof. The statements of the lemma follow straightforwardly from the representation
(5.4) for the strictly causal forms p,, and the conditions of the lemma. O

Condition 5.5. Let q be a strictly causal (see Definition 5.1) operator. The densities

qn (?; -), T =(T1,...,Ty), n > ng, are assumed to be continuously differentiable in
(t1, ..., ™) on R’} up to the boundary 3R’} . We assume that there exist § > 0, C; > 0
such that

J.

+

n
llgnll + E Oz, qn dT +/ - lgnll dT < Cqp™", (5.35)
. gn—1R"
j=1 +

with l|gnll = [ gn (T3 )|y forn =no,no+1,.....

Lemma 5.6. Let Condition 5.5 hold. Then q € A <Cq, Ry, C()Ty, COTY>’ d oq €
A(Cq. Rq. €Ly, CLy ) with Ry = B, Cq = C.
Proof. The statement directly follows from Lemmas 5.2, 5.3 and 5.4. O

The following lemma shows that a composition of causal operators is again a causal
operator.
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Lemma 5.7. Let forms 9, and @, vy - - - » 8my,,v, be causal. Then the composition of
the forms

SN,v )= Pnu (9m|,v1 (© I, v, ()) s, N=my+ - +my, (5.36)
isan N -linear causal form as in (5.14) with a density sy ,v; if Pn,vo ANd Giny vy s - - - > Gmyvn

are strictly causal then sy, is strictly causal too. In addition to that, if we introduce
integers

My=0, Mj=my~+---+mj, j=1,...,n, (5.37)

then for 0 <v <n,

. /. ¥ v ’
(T )= 2 [ p (i ) 4
b S (5.38)
gl)j = gmj,vj- (TMj,I-Q—l - T]/'v cee TMj - T]/y ZMj,l-l—lv e ZMI')

with the convention (5.18) applied to all forms under the integral. The norm of the density
SN,y satisfies

n
lsvoll < leall L D [T lemyus |- (5.39)

Vit =y j=1

Proof. Since the integral over 9#R’| equals the sum of the integrals over the faces
f C 9"RY, and the formula (5.38) is linear with respect to the densities p,, , and g,,,
the integral (5.38) expands into a sum of integrals over faces and it is sufficient to consider
the case when the density is non-zero only on one face. Namely, p, = pn,u = pa.pu, f
and gm;,v; = &m,,v;,f; are supported respectively on faces f and f;. To verify the rep-
resentation (5.38) for sy, we plug the expressions for Om,v, with the densitygmj,vj, £
into the integral representation (5.12), (5.21) of p, ,, with the integral over the face f of

MR’ We get then for such p,, (gm, . - - - , gm, ) (¢) the following “long” expression
T f]R".l 8my,vy, fi [Tl,xl <(f —11) T- ?1)] d’tq, ...,
/M Pn,u, f n — ) d*t.
IRf fﬂg‘]’(ﬁ Emy,vn, fn [rn’ Xn ((l - Tn) I — ?n>:| d "Tp
(5.40)
Note that
(=) T=2))=x,((T-72))-%T). (5.41)

After the integration with respect to 7; the result depends only on pp . £, &m;.v;, f;>

t_l) -7 j and on x; (-). To check that the result can be written in the form of a causal
integral we use (5.21). For simplicity, we take

f={+1=..=t=071>0,.,1, >0}, (5.42)
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and, hence, Iyx; = xi,..., Irx, = 0. Then we recast (5.40) changing the order of
integration

d" 1 dt d"t
va R n R*
’ Jn S

T =5 gmoni [Tl?fl =Tl (Ta) + (1= 1) (f)]’
sy gmnv”nvfn

Pn.u, f
(5.43)

Note that in the process of the integration with respect to d* 7 the functions x ; (? j)
are constant, and the result is a multi-linear form with respect to z; = If/.x j (? j) +
(I = Iy;) xj (). It has the following form:

/ d‘”rl.../ d"t,
V] V)
R Rf:’z

h

— —
t1 f— ?1 8my,v1, fi (Tl 1 fi1 — ?I;ZI) s
DPn,p, f

: d*t.
M —
RI; "”gmnavnafn (T” \ fo T ?n,Zn)
Since
— — —
Gl =Tj=n—(-7) Ty mj=t1;-7 (5.44)

the integral with respect to T equals the convolution
Syt o 1, frveee i Vs f (W15 oo T3 21 ey Zn)

— —
= /RM pn,l%f(?; 8my, v, fi (771 —tu g zl) »eees 8my,vy, fu (ﬂﬂ -1 1 Sus ZM)’
f

ees 8o, o (s Zn) )d“‘[. (5.45)
Thus (5.40) equals

f d”‘rl.../ dt,
V] i
R, ]R/.’z

N

S oty f <t 1—?1,...,t—1>fn—?n;lflxl(?1)+(1—If1)x1(t),).
M SV e e L Xy (Tn) + (1 = 1) x5 (1)

This integral has the form of the right-hand side (5.22) of (5.21) with 7" replaced by

T =(T1, ..., Th)and x replaced by ¥ = (x1, ..., x,) . Therefore (5.40) coincides

with a causal integral in particular s, ;... = 0 when one of 1T f; — Tj & fjsince

tlf - Tji—7 lf ¢ fi aswellwhenr] > 0 and gp,;,v;,f;, = 0 in this case.

Formula (5. 38) 1s obtalned by the summation of (5.40) with respect to f, f1, ..., fu- The

boundedness and the continuity properties can also be verified stralghtforwardly based
on (5.45). A direct estimation of the norm of (5.45) yields the inequality

sup ”Sn,u,f,ml,vl,fl,‘.. (7711 cees M3 Ty wees Zn) ”
Nyseees My

n
< Pass I T1 sup [lgn, .1, (7)1 - (5.46)
j=1
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For the density norm of s, defined by (5.19) we get

[l ) a7
= // [Py (7] H Hgmwwff (n,- - Tj_ff,-sZJ)Hd?dM’
j=1

-/l
</

Therefore,

n
—_— -
P f (t - -, ) H 1_[ Hgmj,uj’fj (rj 1 i~ ?j,Zj)H dTd"t
j=1

n m;
pros (75 =2 ) | @2 [T fammy. s | TT el
j=1 i=1

n
lsnse.romtons e | = UPnws LT T N - (5:47)
j=1

To get (5.39) from (5.47) by the summation with respect to f, f1, ..., f, weuse (5.27).
The continuity of s, ;. f,m1,v,, f1.... is proven in the following Lemma 5.8. O

Lemma 5.8. Let s (1]1, ooy M3 Ty oems zn) be given by (5.45). Then s (171, e M ) is
continuous up to the boundary with respect to everyn; € fj, j =1,..., j.

Proof. Let us rewrite (5.45) in the form

s (7; Z1, ...,zn) = /P (?; 81 (771 - Tl_1>f1; Z1),
o 8 ("u 5, Ty, zﬂ) oo gn (s zn)) dht, (5.48)
where
81 = &myvi fis s 8n = Bmava fos P = Prgusfs W= (M1 oo M) - (5.49)

Let us pick any zy, ..., Z, such that ||zj,~ ||Y = 1. Below we will skip zy, ..., Z, in the
notation. Consider a sequence 7; — 7o, — oo. Let us also pick a small € > 0 and
show that for large N,

Is (7)) —s(To)|, <e. I =N. (5.50)

Notice that since
lgm;v.p; ()| < Cus =10 (5.51)

and (5.20) holds, we can always find large enough p to get for all 7 the following
inequality:

/{‘|T|>p} HP (?§ 81 (771 - Tl_l)f];) v &1 ("u - TM_1>fM,> s eees 8n (M ))Hyd“r
< €/6.
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Let the number Tp; be d_e)ﬁned to satisfy the following relations 9 ;o — 7; 1 f; € f; for
0. <7< Toj.mjo—71j I f; & fjfort; > To;. Such anumber Tp; exists and is unique
since f; is convex. For § > 0 we set

Qs={ref:ltl<p, |tj—Toj| <8, foroneof j=1,..,pu} (5.52)

and we choose § to be so small that

).

We choose Ny to be so large that |77jl - nj0| < /2 whenl > Ny for all j. Notice that

— —
P (?; gl (771 -1 1 f1) oo 81 (nﬂ -1, 1 fﬂ) s 8n (nn))“yd“r < €/6.

gj (njl — rj_lifj) vanishes when t; > To; +J according to (5.18) since |’7jl — nj0| <

Sand n; — rj_l)fj ¢ fj in this case. Therefore the integrand in (5.48) with 7 = 77
is non-zero only when 0 < 7; < Tp; +6/2, j = 1, ..., u; we denote this domain by D.
Consider now

f Ipllyd“z, (5.53)
DN{|T|<p}\Qs

- — —
p=rp (?; 81 (7711 —ul f1> e 8 (ﬂm -1l f,l) s 8n ﬂnl )
— —
4 (?; 81 (1710 -7 1 f1> yeo s 8u (ﬂuo -t 1 fﬂ) s o0 8n (7Ino)>

with [ > Ny. We would like to show that the domain of this integral is such that
Ny~ 1g € fjuj =1 . nIndeed, if t; < To; +8/2, 1, — ;T 5, ¢ f; then
”jl_":]/‘—l)f,' =£e€df;,0< r]/. < tj,and wehaveall §; > 0, §;, = O forsome iy < v;.
Since ’77.,‘1 — )1/-0] <_8)/2, thez_(‘;h coordinate 1 jo;, of njo—t]’. I f; satisfies |njo,-0| < §/2,
and, hence, ’7,’0—7} Ly=B 1y & fiforp = 6/2, therefore j+3/2 > To;. Therefore
|T0/ - ‘L'/| < §/2and T € Q5. This contradicts therequirementr e DN{|t| < p}\ Rs.

Since all the arguments 3;; — 7; T fandnio — T T f; in (5.53) are shown to be
in f;, the functions g; are continuous on the closed bounded set D N {|z| < p} \ Ls.
Hence

1d — .
Hgf (”fl —% fj) - ("jo -7l f,)HY <e.j=1..n, (5.54)

where €, — 0 as [ — oo. Since Hp (?) || is bounded, the integral (5.53) is not greater
than €/6 when ! > N for large enough N. Splitting s (7 ;) — s (7 0) into the sum of
integrals over the following three domains DN{|z| > p}, DNQs and DN{|t| < p}\ Qs
and using the above estimates we obtain (5.50). O
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6. Abstract Nonlinear Maxwell Equations

A substantial part of the nonlinear analysis of the Maxwell equations can be carried out
in an abstract and simpler form as it is shown below. Conditions imposed on quantifies
of interest are motivated by the original nonlinear Maxwell equations.

Let m be a linear self-adjoint operator in H, and let us consider the equation

ou = —imu — j(1). (6.1)
We assume that for negative times everything is at rest, i.e.
J@®=0,u(@)=0,1t=<0. (6.2)
The properties of solutions (6.1) are described in terms of the nested Hilbert spaces
Hyp={u:mueH}, Hy=Hmw CH, s=12,., (6.3)

with the norms defined by (3.45) with B = m. In terms of the spectral projections P (1)
associated with the operator m we can write

mfuzfoo 2dP M u, ||u||§ﬂn =/OO (A25+1)d(P (M) u, u)py . (6.4)

—0o0 —0o0

Observe that, in view of the self-adjointness of m in H, the operator of linear evolution

¢'™ is unitary in . Besides, every ‘H?, is invariant under the action of '™ and '™
is also unitary on H}, since
(eim’u, e"m’v)w = (mseim’u,mseim[v> = (m'u, m*v) = (u,v)py . (6.5
The solution to Eq. (6.1) under the conditions (6.2) takes the form
4 . /
uo (1) = — f ™= (1) ar'. (6.6)
—0Q

The validity of this representation is given by the following lemma.

Lemma 6.1. Let H be a separable Hilbert space and m be a self-adjoint operator in it.
Let j(-) € COTHS, s > 1. Then '™ j (t) is a continuous H3,-valued function of t. Let

t
u(t) = —/ ™= j () dr'. (6.7)

Thenu () € COTH.V , 0 (¢) € COTHH’

t
e @) l943, 5/0 17 ) g, @t 0 @y

t
< fo 17 () dt’+ llu 0l 6.8)



Nonlinear Maxwell Equations in Inhomogeneous Media 561

and u (-) satisfies Eq. (6.1) in C7T_P.,1. The solution operator (3; +im)~ ' : j () — u ()

given by (6.7) extends by continuity to a bounded operator from L1 ([—oo, Tl; an) to
C7T_l,v with the norm

H(az + im)_l J

C;:[S < ”jnll([—OO,T]:Hin) forany T >0, (6.9)
and (0; + im)*1 Lio ([—oo, T1; Hin) C COTHS . The operator 0; (0; + im)*1 extends
to a bounded operator from L ([—oo, Tl; an) to C;;S_].

Proof. The linear operator ¢/™ continuously depends on ¢ in the strong operator topol-

ogy and is uniformly bounded (itis unitary in 3}, forevery ¢), j (¢) continuously depends

on ¢. Therefore /™ Jj (¢) is a continuous function of ¢. The function
4 . /
f &5 (1) di’ (6.10)
—00
is a continuously differentiable 13, -valued function of # and
! . 7 .
8,/ e (t’) dt' =™ j(1). (6.11)
—0o0

Let us introduce

t

t
ug (1) = —/ emim(=1) (") di’ = —e"m’/ ™ j(1)ar, (6.12)
—00 —00
which is a continuous function of ¢ in ¥, . The operator e~'™ considered as an operator
from H3, to M3y ! is strongly differentiable with respect to t and

t

dug () = ime ™ f ™ (1) di’ — j (). (6.13)

—00

Consequently, (6.1) holds with both parts being in H}; I Obviously, ug () =0, < 0.
The inequalities (6.8) follow straightforwardly from (6.6), (6.13). Note that (6.8) implies

T
luoller, = f IJ (Dl dt forany T = 0, (6.14)
m o0

which, in turn, yields the boundedness of the operator (3, + im)~' together with the
inequality (6.9). Using this inequality we extend (3, 4+ im)~! to functions j (¢) having
the following norm bounded:

T
1711, (=00, 7115 =/ 17 )35 305 dt” < 00 (6.15)
—0o0

The inequalities (6.8) imply the boundedness of the operator d; (3; +im)~' from

Li ([—oo, T]; H) to c;s_l. o
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We use the formula (6.7) to define the action of the operator (9, + i m)~! on
Ly ([—o0, T; Hi,]) yielding a solution to (6.1). In particular, we use (6.12) for j €
Lio([=o0, T My ]).

Let us look at a modification of the linear evolution equation (6.1) by inserting there
a nonlinearity g to get an abstract version of the Maxwell equations (7.36). An abstract
version ¢ of the operator g given by (7.37) acts on trajectories u (t), —oo <t < T, in
'H3, rather than just states in Hy,. We assume q to be a strictly causal analytic function

ofu € COT s Tepresented by a power series as in (5.29) (see Definition 5.1).
s/ lm
Our abstract version of the nonlinear Maxwell equations is

du=—im{u+q@)}@)—j@), j@O)=u)=0,t<0. (6.16)

Now we recast Eq. (6.16) to “eliminate” the action of the unbounded operator m onto
the nonlinearity. We introduce 4, 5

w=u-+q@) (6.17)
and recast (6.16) as
hw = —imw (¢) + 9,q (u) — j (t) (6.18)
(see Lemma 6.2 for a justification). By Lemma 6.1 Eq. (6.18) is equivalent to the fol-
lowing equation:
t
w (1) = ug (1) + / e ™8, q (u) (1) dr'. (6.19)
—00
Expressing w in terms of u we get

w (1) = uo (1) — q () + / t e ™3 q ) (1) dr', (6.20)
—o0
To write (6.20) in the form of (4.24) we introduce the operator
R ) (t) = —q () + /t e g q ) (1) di', 1 < T 6.21)
—o0
which allows us to rewrite (6.20) as
u=uyg+NR®w. (6.22)

The next lemma shows Eqs. (6.16), (6.20) under natural conditions are equivalent.

Lemma 6.2. Let j € L ([—oo, T; an]), operators u — 0;q (u) and u — q(u)

act from the neighborhood Q2;, = {u : |lullor = < ri ¢ ofzeroin COTHS into Cﬁs . Let
an ) m m
u e C COTHS be a solution to (6.20). Then, first, o,u € C()THS*I and, second, u (t) is
»iim s tm

a solution to (6.16) for t < T. Conversely, if u belongs to Q,, C COTH‘ , 0l € C()THS*I
and u (t) is a solution of (6.16) then u is a solution of (6.20). ’
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Proof. If u is a solution of (6.20) then by Lemma 6.1 d,u € COTH“‘ .Forw =u+q(u)

obviously w € @, 4,, and d;w € Hf{l. By the assumptions q (1) , 9;q (1) € COT,H{,, and
the equality (6.19) holds. By Lemma 6.1 we get (6.18) and since o, w = d;u + 9;q (1) we
get (6.16). Conversely, if u € 2, we get (6.18), then by Lemma 6.1 we get the equalities
(6.19) and (6.20). O

Now we prove our main statements on the abstract Maxwell equations (6.16).

Theorem 6.3. Let H be a separable Hilbert space and m be a self-adjoint operator in
it. Let T > 0, q be an analytic function in C OT s » and constants Cq and Rq be such that

a€A(Cq Rq. Clype - Clyg, ) and 0 € A (Cq, Rq, Clyge - Clyye ). Letno = 2,
qn =0forn <ng—1,qsy #0. Let j € Ly ([—00, T];HS,) and

T

Iy ooty = [ 15 @l dr =50, 6.23)
o

where & is small enough for the following condition to hold:

1 Rq (Rq — 480)
1+7T < —————~. 6.24
+7T < 5 3C, (6.24)

Then there exists a solution u € COT s Of the the abstract Maxwell equation (6.20).

The solution u = U (ug) is a uniquely determined analytic function of ug with U being
an analytic operator in COT s - In particular, u expands into the convergent series
s lm

w () = U (o) (1) = o (1) + Y Uy (o) (1), (6.25)
n=ngo
1t woller < CucRig luollgy . n = no. (6.26)
L m 0,H5,

with Cyc and Ryc as in Theorem 4.8, where Rp = Rq, Cr = (1 +T)Cq, yL = 1. The
operators Uy, can be found from the following recursive relations:

U, = Z R (Z/{n,, o ,Z/{nm) , U} is the identity operator, (6.27)
m>ng, nj+-+ny=n
with R, being given by
t
R () (1) = = () (1) + / e ™) (3,0, @] (1) di', nznp=2. (6.28)

o]

The first significant term U, in (6.25), the first nonlinear response, has the following
representation:

Uny (uo) (1) = Ry (o) (1) t
= —lnp (uo) + /0 eiim(tit/) [8l’qn0 (’40)] (t/) dr’

t
—i /O e ™ mg, (ug) (¢') dr'. (6.29)
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Any solution of (6.20) satisfying |lu/| B = 8 with a sufficiently small § is unique. If
Cors,

no > 2 and 8y < Rq/8 the condition (6. 24) can be replaced by

Rq (850/Rq)' ™™

147
= 2C,

(6.30)

Proof. Equation (6.20) when rewritten as (6.22) is of the form of Eq. (4.24) with z = u,
X = C({ Hs, o X = U0, L being the identity operator. The n-linear operators F,, = R,
in the series decomposition of F = R are defined by (6.28). To apply Theorem 4.8
we need to estimate the norms of the n-linear operators F,. Since 0;q, (1) € C({ e
[9:9n ()] (t') = 0 for ¢ < 0 and e~'m(=") are unitary in HS,, then fort > 0,7 < T,
in view of (5.35) we have

H/ 71“‘1(1‘ l)a an (M) dt

/ o1 0) ()],

< tsup ||8,9n ) (') s < T 19ian @ller
<t " 0-Hm

Since q, 0;q € A (Cq, Ry, COTHS , COTHS ) we obtain from (6.28) that

IR, W) llx <A+T) CqR;" lul%, n=2,3,.. . (6.31)

Observe that ||L] = 1. The inequality (6.31) implies that R belongs to the class
A((14T)Cq, Rq, X, X). We would like to apply now Theorem 4.8 and Corollary
411 with Rp = Ry, Cr = (1+T)Cq, yo = 1. By Theorem 4.8 u = G (uo),
G € A (Cii, RiG, X, X), and, hence, setting G = U/ we obtain the relations (6.25),
(6.26). Note that according to (6.23) and (6.14) ||ug||y < 8¢. By Corollary 4.11 G (uq)
is defined for

luolly <o < aRyq, (6.32)
where R, is given by (4.56), that is

RZ
Ry = £ , Cpr=a" " 'Cp. (6.33)

2 (RF +2Cr + 2/ RFCp + c}%,)

Note that 2./Cg'/RF + CF/ < Rr + Cp/ + Cpr, and, hence, the condition §g < a Ry

is satisfied for §p/a < RZ %/ [4 (RF +2Cp)]. Consequently, a sufficient condition for
2
the solvability of (6.22) takes the form 2C < %% — Rq that is

2
no—1 Oqu _
200 (I1+T)Cq < ———Rq. (6.34)
450

If ngp = 2 we set o = 1 and obtain the condition (6.24). If ng > 2 and §p < Rq/8 we set
a = 859/ Rq and obtain the condition (6.30). If conditions (6.24) or (6.30) are satisfied
Theorem 4.8 implies the existence of the solutionu = G (ug) = U (up) of (6.20) written
in the form (6.22). We obtain then (6.25) from (4.27), and the inequality (6.26) follows
from the definition of the class A, (Cg, Rg, X, X), see Definition 4.3. Formula (6.27)
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follows from (4.29). Note that in (4.29) Fj; = F; and s = 0 since F does not depend
on ug, and (4.29) takes the form of (6.27). The uniqueness of a small solution follows
from Lemma 4.10. O

The next theorem adds some more details on properties of the solution for the case
when q and 0;q are causal.
Theorem 6.4. Assume that Condition 5.5 is satisfied. Then statements of Theorem 6.3
hold. In addition to that, we haveld € A (C*G, R /e, COTHS , COTHx ), where Cyi, Ry
are given by (4.25), (4.26) with

Rr=Rq=B.Cr=(1+T)Cq=(1+T)C,. (6.35)

and the constants Cq and B are from Condition 5.5.

CT

Proof. By Lemma 5.6 q, ;q € A (Cq, Rq.C o

applied. O

OT S ) and Theorem 6.3 can be

7. Analysis of the Original Maxwell Equations

In this section we provide the proofs of Theorem 1.3 and a more detailed Theorem 7.8
assuming that Conditions 1.1 and 1.2 are satisfied. Our analysis of the Maxwell equa-
tions (7.29) and its regularized form (7.42) is based on their reduction to the abstract
Maxwell equation (6.16) and consequent use of Theorems 6.3 and 6.4. First we show
that the constituency relation (1.8) is given by a causal analytic operator considered in
the previous section.

7.1. Analyticity of the constituency relation. Inthis subsection we study operators (1.12),
(1.13) that are involved in the nonlinear constituency relation (1.8). To use results of
Sects. 4 and 5 we set

Y =H X=Cjy = Co([—o0, T]; H). (7.1)

The operators corresponding to (1.13) fit into the abstract framework of the previous
section and possess an additional property. The multi-linear forms of the type (1.13),
(1.14) define operators

V]Ri

Bu E1, ... ,E,,)(t):Z/ Py [t TiE (t—11), ... . E, (1 — )] d'7,
v=0
(7.2)

where the densities P, , [r, T ?] are n-linear forms in & € C" that depend on vari-
ables: T = (t1,...,7,) € "R"” and acton € = (e|,...,e,) € ((C3)n. Causality
implies that 3, (E) (-)) (. 1) depends only on EW) (-, ;) with 7; < t. The operators
B,, defined by (7.2) have an important property: they are spatially local, namely

the value of 3, (f (-)) (r, t) depends only on EY) (r, tj) with the same r. (7.3)
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In this subsection we consequently establish the analyticity and the causality for the
operators Pni, (E), 9;PnL (E) from (1.8). Further, we prove that (1.8) determines E as an
analytical function of D, namely that E = S (D), where S (D), 9;Sni. (D) are analytic
causal operators. According to the following proposition the Sobolev space H* (Rd ) of
scalar functions with s > d/2 is a generalized Banach algebra (see [49], Sect. 21.21 or
[42], Sect. 2.8.3)

Proposition 7.1. For any integer s > d /2 there exists a constant yy depending only on
s and d such that

luvligs < vo lullpgs ol gs (7.4)

and, consequently,

—1
lureunllgs <vg— Nuillgs - Nupllys . n = 2. (7.5)

To verify the continuity of multilinear polarization forms such as in (1.13) we use
Proposition 7.1 and obtain the following lemma.

Lemma 7.2. Let P, (r; 7), € =(e,...,e,) € C", ben-linear operators (tensors)
from C™ to C™ with coefficients that depend onr € R?. IfE; =E;(),j=1,..n,
are functions from H*, s > d/2, P, (.; E (.)) belongs to H* = H,. The mapping
P, : iof (r)— P, (r; iof (r)) determines a bounded n-linear operator P, from (an)n
to H, and there exist positive constants C and y depending only on s, m and d such
that

I Pl s < Csy ™" 1 Pallcs (7.6)

where the norm || P, | cs of the tensor P, (r) is defined by (2.10). In addition, for any
i,1 <i<n,

Proof. Since the tensors can be written in coordinates, it is sufficient to consider a scalar
case. Notice first that there exists a constant y; depending only on s > 0 such that

P (E)| ., =y IPalco 1Bl [T1E)|
JF#

- (7.7)

luvligs < yillulles vl gs - (7.8)

Combining (7.8) with (7.5) we get (7.6). To get (7.7) we note that by the Sobolev embed-
ding theorem in R,

lullco < C ullys ,s > d/2 (7.9)
and
luvligo < llullco llvllgo < C" llull gs vl o - (7.10)

When u is a product of functions we apply (7.5) and obtain (7.7). O
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As a direct corollary we obtain the following lemma.

Lemma 7.3. Let densities P, (r;T) = P, (r; T; €) that depend on the parameters
= (11,...,%) € RY and act on € = (e1,...,e,) € C3n satisfy Condition
1.2. If E; = E; (r) are functions from H*,s > 3/2, then for any T = 7(,..., 7T,

P, (-; T; bof (~)) belongs to H® and there exist positive constants C, C' and y depend-

( >H,,H (7.11)

(7.12)

ing only on s such that

K

= E),

=

= (I1Py (D)l s

In addition, forany 1 <i <n,
)Pn(ﬂf;f)\) G

<— ||E o (120 (©)llco + [ Bu (@) | o) [TIES s - (7.14)
JF#i

(7.13)

Lemma 7.4. Let Condition 1.2 hold and P, (E) be defined by (1.13). Then Condition 5.5
holds for the densities gy, (?; ) =P, () withY =H, 8 =yBp, C; = C;Cp.
The constants Cs and y are the same as in (7.11), Cp, Bp are the same as in (1.18). For
any T > 0 the series (1.12) determines an analytic operator Py € A (Cp, Rp, X, X)
where Cp = C;Cp, Rp = yBp, X = C({H,v = Co([—00,T];H*), s > 3/2. The
operator 0;Pyp is also an analytic operator in COT’HS, o/Pyy, € A(Cp, Rp, X, X).
The operators Pyp, and 0;Pyy, are respectively strictly causal and causal; they satisfy
Condition 2.1.

Proof. By (1.13) Py is strictly causal. By Condition 1.2 and Lemma 7.3 P, = g, sat-
isfy the inequality (5.35), therefore Condition 5.5 holds. By Lemma 5.6 Pxi, 9,PNp €
A (CsCp,yBp, X, X). The fact that 9,Pnr (E) is causal follows from Lemma 5.4.

To check that Condition 2.1 is fulfilled for d;Pni, we use the fact that the multilinear

operators 9, P, (f) are represented in the form (5.13), (5.33) by the explicit formulas

(1.14) involving the densities P, ( T f) , P,, ( T f) to which we can apply the

inequalities (7.13). We pick a test function v (¢, r) and, then, taking the strictly causal
part Py, , of (1.14) proceed similarly to (5.26):

fﬂ /¢ (t,1) Pun (E’) (r, 1) drdt

/Tlfw(t r)/ / r tT - E (r, t)) Hdt]drdt
S/OTI/OOO,,,/OOO i‘(,ﬁ’_,))‘m

Il ¢ Ollgo [ [ dejdr.
J
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Using the inequality (7.13) for a given i we find that the right-hand side is not greater
than Cspy ™" times

T o0 [e’e} .
TTIE e /O /0 /O | 2o ) o 1B ¢ = ) lgo 19 () llgo [ ] djaie
J# Y

o o0
<TTIE ez, 1112, r0.711.10) ||Ei||Lz([o,T1],H°)/O /0 |2 @ o [ T
J# j

Using the inequality (1.18) we get

T
/ f W (1) Pun (i’) (r. 1) drdi
0

< Coy " TTIE er 1912 o1 m0) Wil 0, 711,00y C 83"
J#i

Setting ¥ (¢, 1) = Py.n (TE)) (r, t) we obtain

Observe that a similar estimate holds for the term P, ,—1 (f) in (1.14). Hence

o7 ()

where Rp = y Bp. Using this inequality and the evaluations similar to (4.51)—(4.53) we
obtain the following estimate:

0P () = 3P (B3) 1, 0,711, m0)

n—1
= 20pCo Ry max (IEillcz . IEaller ) I1Ex = Eall 0,110

< CpC - E; E; . (715
oy = OB I gy 1B luoraany 019

<2CpCRp" ||E; E; , 7.16
L0 H) = PCsRp" || :||L2([0,T1],H0)g|| ‘/“C}Tls (7.16)

which, after the summation in 7, allows to conclude that Condition 2.1 holds. O

Lemma 7.5. Let P, (E) be defined by (1.13) and Condition 1.2 hold with some s > 2.

Let
Rp +2Crp — 2,/ RpCprp + CJ%P |
R = ) = s S 7 7
s T+ vn = Inllgs 1 (7.17)
Cs == (Rp+(1+1) Rs) — R, (7.18)
2(Rp + Czp)

where Cpp = 4wy, Cp, and the constants Rp, Cp are the same as in Lemma 7.4. Then

for every T > 0 there exists a unique analytic operator Sy, in the space X = C({ H
such that, first, Syp € A (Cs, Rs, X, X), Sy € A(Cs, Rs/e, X, X), and, second,

E =5 D) =D + Sy, (D) (7.19)
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solves Eq. (1.8) for |Dllor < Rs. The operator Syr (D) is a strictly causal analytic
HS

function of D represented by the convergent power series

Sw@)= ) S D), [Plgr < Rs. (7.20)

n=nqo

The operators S, satisfy the following recursive formulas:

Si=1n,8,()=—4my > P (S ()1 Sy (), =2, (721)

mzng, nit-tng=n
in particular
S$i=0,2=<n=<ng—1, S, D) =—4ayP,, (D)"). (7.22)
The polynomials S, (D (+)) are spatially local as in (1.13), (7.3).
Proof. Let us rewrite the equality (1.8) to make it fit the form (4.24):
Ex,t)=9@)D(@,t) —4ny(@)PnL (E) (r, 1), (7.23)

where 7 (r) is defined by (3.2). Then we apply Theorem 4.8 with L = 5, x = D,
z=E, F(z) = —4ayPy. (E), X = COT’HS = Cp ([—oo, T']; H®). Note that in (4.29)
Fjs = 0 when s # 0, Fjo = F; and since F does not depend on D, and (4.29) takes
the form of (7.21). By Theorem 4.8 we obtain that (i) the series (7.20) converges; (ii)
SNL € A« (Cs, Rs, X, X) and E = S(D) = D + Sni (D) is a solution of (7.23).
By Corollary 4.6 we have SN € Ay (Cs, Rs/e, X, X). By Lemma 5.7 operators S,
are strictly causal. Since a composition of spatially local operators is spatially local, S,
defined by (7.21) are spatially local. O

Notice that the statements of Lemma 7.5 imply that the function Sy (D) has the
radius of convergence which does not depend on T'.

Lemma 7.6. Assume that Condition 1.2 is satisfied. Then the operator 9, o Sy; = 9;SnL
is an analytic operator such that 9,Sny; € Ay« (Cg,Rg,X,X), 0;:Syr €
A(Cg, Rp/e, X, X), where X = C{ s,

RpRs CsCp

:—,C :47‘[ —_, 724
Rp + Cs E ynRP—f-CS ( )

E

and the constants Cp, Rp, Cg, R, yy are as in Lemmas 7.4 and 7.5. The operator
9; Sy (D) is represented by the power series

USNL () =Y 8Su (), (7.25)

n=no

where 3;S,, satisfy the formulas based on Py; and S (D) defined by (7.20)—(7.22)

USi(Y==Y > AN Pu(Su (). Sny () n =m0, (7.26)

m>1ni+---+ny=n

where 0; Py, are given in (1.14).
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Proof. According to Lemma 7.5 we can rewrite (7.23) in the form
E = 3D — 47 yPyp, (S (D)), (7.27)
and comparing with E = 3D + Sni. (D) we conclude that
S\L (D) = =4 gPyL (S D)), 9, Sne (D) = —47 09, Pne (S (D)) . (7.28)

Using Lemma 7.4 we conclude that —47 Py € A (47y,Cp, Rp/e, X, X) . According
to Theorem 4.12 the composition —4wnd,Pnp (S) belongs to the classes
A« (Cs, Rs, X, X) and A (Cs, Rg/e, X, X). O

7.2. Nonlinear Maxwell equations in divergence-free variables and existence of a
solution. To construct and study solutions to the Maxwell equations we need to re-
cast the equations to an equivalent form which, firstly, involves only divergence free
fields, and, secondly, provides means to control the spatial regularity of the fields as they
evolve in time. For a spatially inhomogeneous medium when the material constants,
in particular €, depend on the position vector r, there is an advantage in selecting the
electric inductance D rather than electric field E to be the primary field variable, because
of the simplicity of the condition V - D = 0 compared with V - (¢ (r) E) = 0. This
advantage is even greater in the nonlinear case since Eq. (2.15) becomes nonlinear. For
this reason we recast the constitutive relations (1.8) to express E () as a function of
D ().

Substituting the expression E = & (D) given by (7.19) into the Maxwell equations
(1.1), (1.2) and (1.5) we get the following operator form of the Maxwell equations:

U@ =—iMU@)+iQU) (@) —J@); U(@)=0forr <0, (7.29)
where U, M, J are given in (3.4),

0w =i guge 1y | (730

and
V-D=V-B=V-Jp=V-Jg=0, (7.31)
J(@)=0fort <0. (7.32)

We look for a solution U (¢) , —oo < ¢ < T that belongs to Cq ([—o0, T]; H*) with
s >2and 9;U € Cy ([—oo, T];H _1). Evidently, (7.32) is consistent with the require-
ment U (#) = 0 for ¢ < 01in (7.29). Note that for any ¢ the function Snp. (D) (#) depends
on the values of the field U (t’) attimes ¢’ < rasin (1.13). Since the expression (7.30) for
the nonlinearity Q (U) involves the curl operator V*, it acts from Cq ([—o0, T]; H%) to
Co ([—oo, T]; H‘Y_l). To reduce (7.29) to a regular integral form (7.42) with a bounded
nonlinearity that acts in the space Co ([—oo, T]; H*) we need to apply some transfor-
mations. We can do that by recasting the Maxwell system (7.29) in the form of their
abstract version (6.16) considered in Sect. 6 by setting

m=M, My =H. €l =C (00, T H}) = C ([—oo, Tl HM) . (1.33)
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where M is defined by (3.25). Below we verify the conditions imposed on abstract
operators in Sects. 5, 6.

Recall that the Banach space Cy ([—oo, T];Iflfw) consists of Hf‘,[ -continuous

trajectories U = U (r), —oo <t < T in Hj,l satisfying the rest condition U (¢) = 0 for
t < 0 with the norm

U Ol o sup U@, = sup UMDl - (7.34)

—oco<t<T 0<t<T

[0,T1; ) =
According to (3.21) we have in (7.30),
VXSNL = V*TIpSnL = V> Toii ' TloSnL = Vi~ TloSN, (7.35)

where 7 is the operator of multiplication by a matrix » (r), is the restriction of Ty to

I:z, and if] is the inverse of 3§ on 122, the inverse exists according to Lemma 3.2. Using
this identity we rewrite the Maxwell equations (7.29)— (7.31) in the form

U (1) = —iM[U (1) +q(U) (D] =T (1), (7.36)

where M is defined by (3.25)

o, X

[e¢)

or . 0 Vv _ _ a1 | oSn (D)

M= [_W 0 ] g =) 6 ), g, (V) =& [ o |- 3D
n=ny

where 27! is the inverse on L% of = 1'1(2) "‘1'1(2) from (3.5), H(z) is defined in (3.38);

the inverse exists according to Lemma 3. 3 We assume that the 1mpressed currents in

(1.4) satisfy the following condition:

Jo.Jg € Lo (I—00, T1:H°), (7.38)
and we look for a solution
D .
U= [B] .D.BeC ([—oo, T]: HS) . (7.39)

Recall that the conditions Jp,Jp € Lio ([—oo, T1; HS) and, similarly, D,B €

Co ([—oo, T1; fls) include the divergence-free conditions (7.31) as well as the rest
conditions (1.6) and (7.32).

By Lemma 3.1 the operator M in (3.25) is self-adjoint, therefore Lemma 6.1 is appli-
cable and transformations (6.16)—(6.20) are applicable, with notations (7.33). Clearly,
(7.36) has the form of (6.16). Let us look now at the nonlinear equation (7.36) and,
in particular, on its term Mq which involves the differentiation with respect to space
variables of the nonlinear function of the fields. Following (6.16) —(6.20) we can recast
Egs. (7.36) and trade off the space derivatives in Mq for the time derivative 9;q (U)

which, as we show, results in an analytic operator with respect to U for g of the form
(7.37). Note that in the framework of Sect. 6 Eq. (6.12) becomes

t o
Uo (1) = — f e 1 =OMy (1) ar, (7.40)

—0o0
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obviously Uy (r) = 0 for ¢ < 0 since J (#) = 0 for < 0. Notice that (6.14) implies
T
100l (i) = |19 Ol (741)

for any T > 0. Using (6.20) we rewrite (7.36) in the regular integral form
t .
VO =0 -q@n+ [ My g () ar. (7.42)
—0Q0

By Lemma 6.2 this equation is equivalent to (7.36). Lemma 6.2 is applicable since the
time derivative d; o q (U) is a bounded, analytic operator according to the following
lemma.

Lemma 7.7. The function q defined by (7.37) is an analytic function in CPZF for every
M
T > 0. We also have that q € A, (CQ, Ry, Cﬁs, CPTF) and q belongs to

A (CQ, Ro/e, CIZ{S ,Cl%ﬂ) , where
M

Rg =Rsc_,Cg = Cscy (7.43)

S—1
oy
d ’

i, S,

1

with Rg, Cs being as in Lemma 7.5, ! H P being the norm of the operator 2 lin
MM

ij and c.., c_ being as in Lemma 3.4. The operators 8;q € Ay <C’Q, R/Q, Clis+ C}TIS) ,

T T
dqe A (C’Q R’Q/e, Cﬁi/ Cﬁfw) ,

o
=
@

, (7.44)

R, = Rgc_,C,, = Cgc
e R T

|

where Rg, Cg are the same as in Lemma 7.6.

Proof. Operator q is obtained from Sni. by applying the linear operator 2 1to

IMoSNL
0

hence, for V € IEIS,

). By Lemma 3.4 the norms in Iflfw, H* and H® are equivalent on ﬁs, and,

IMoSaVllgs < e+ IMoSpVilgs < e+ 1S Vilgs < ¢+ 1S5l s 1V I

= cy [ISullms me VI, < cre”" ISnllms me IVIG, = crc”"CsR™ VI,
M M

with similar inequalities holding for 9,S,,, n > ng. The norm of £~1in H* is bounded
according to Lemma 3.3. Since norms in H$,, and H® are equivalent, the norm of Zlin
wa is bounded too. This implies the statements of the lemma for q. Taking into account

&l

that the operator d; commutes with 7' and 1 and using Lemma 7.6 we obtain the
statements for 9,q. O
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Here are our main statements on the Maxwell equations (7.42).

Theorem 7.8. Assume that Conditions 1.1 and 1.2 are satisfied withs > 2. Let Rg, Cg,
R’Q, C /Q be the same as in Lemma 7.7,

Rq =min (Rg, Ry), Cq=Co+Cy. (7.45)

LetT > 0,3 € Ly (100, 7315 1),

T
DIA— /_ IOl dr <0 (7.46)

where 8o < Rq/8 is small enough for the following condition to hold:

1+7T
= 2C,

(7.47)

T
Let Uy € CO i,

exists a uniquely determined analytic operator U (Uy) in the space C THS such that
U = U (Uy) gives a solutionto Eq. (6.21) and (7.36). In addition to that, ”UHCT < Ro

= Cyp ([—oo T], H ) be given in terms of J by (7.40). Then there

and q (U) is well-defined. The solution U expands into series

U () =UUp) (1) =Uo (1) + Y Up (Vo) (1) ,

. n=no (7.48)
It Uolller < CoRG" Uollpr 1 = no,
0.H), 0.1,
where Cg, Rg are as in Theorem 4.8 and Rp = Rq, Cr = (1+T)Cq, yL = 1. The
operators Uy, n = 1,2, ... satisfy the following recursive formulas:
Uy is the identity, Uy, () = > Ron Uny () Un, (D), 1= no,

m=ng, ny+-+nm=n

(7.49)

where R, are the relevant terms of the analytic function R defined by (6.21), (6.28)
with q,, defined by (7.37). The first significant term Uy, the first nonlinear response, in
(7.48) is represented by

t, ,
Uny (Uo) (1) = Up () — dn, (Uo) (1) +/0 e ™MC=3,q,, (Uo) (t') dt’ (7.50)

t o
—Up(t) —i / e"MI=")Mq,, (Up) (') dr'. (7.51)
0

Proof. Lemma 7.7 implies that the Maxwell equation (7.36) is a particular case of
the abstract Maxwell equation (6.16). The conditions of Theorem 6.3 where Rq and
Cq are given in (7.45) are satisfied. By Theorem 6.3 there exists an operator U €
A (Cg, RG, COTH‘ , COTHY ), and, hence, (7.48) holds. This theorem implies that U =
U (Up) is a solution of (7.42). According to Lemma 6.2, U is a solution of (7.36). For-
mulas (7.48)—(7.51) follow from (6.25)—(6.27) in Theorem 6.3. The formula (7.51) is
obtained from (7.50) using integration by parts. O
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o —1
Now we give the proof of Theorem 1.3. Note that since Uy = (8, + iM) J, where

o\~
(8, +i M) is a linear bounded operator in C()Tﬁ (see Lemma 6.1) analyticity and

s

M
power expansions in terms of Ug imply also the analytic dependence with corresponding
power expansion with respect to J.

Proof (Proof of Theorem 1.3). The existence of B,D € Cy ([—oo, T]; H®) that solve
(7.42) follows from Theorem 7.8, and, hence, (B, D) = U (Up) and 9;B, 9;D belong to
Co ([—oo, T]; Hs_l). We define E = S (D) as a solution of (1.8) with already found D,
according to Lemma 7.5 E € Cy ([—o0, T]; H*), &;E € Cy ([—oo, T1; HS"). In turn,
the function H is defined by (1.7) in terms of B. A pair of functions B, E is a solution of
(2.13), (2.14), (2.15) and (D, B, E, H) € Cy ([—o0, T]; H®) is a solution of (1.1), (1.2),
(1.7), (1.8), (1.6) from the class considered in Definition 2.2. Since B, E are unique by
Theorem 2.4 and D, H are uniquely determined by B, E from (1.7), (1.8) the solution
isunique. O

8. Extension to More General Cases

8.1. General dielectric media. When analyzing nonlinear dielectric media we assumed
for the sake of simplicity that the medium is not magnetic with the magnetic perme-
ability u = 1. In fact, all the results still hold if the medium is a general bianisotropic
(magnetoelectric), inhomogeneous and nonlinear medium with the material relations
more general than in (1.8), namely of the form (see [29], Sect. 1.1)

Ve, )=E@®U@ ) +Kn (V) (@,1), U= |:1];i| , V= |:Ilj:Ii| (8.1)

where & = E(r), r € R3 is a Hermitian 6 x 6 matrix (not necessarily of the form
(2.11)) and Ky, is the nonlinear component of the material relations. The expressions
for Ky are of the form similar to (1.12), (1.13):

Kne (U) = > Ky (U), no=2, K (U)=K,(U,...,U), (8.2)

n=nq

t t n
]Cn(U)Z/ .'./ Kn(r;t_tla'7t_tn;U(r’t1)?"U(rvt}’l))l—[dtja
—00 —00 =1
(8.3)

n
K, t,...,Tu;"): ((Cﬁ) — (C6, n > ny.

Note that like in Lemma 7.5 it is easy to show that (8.1) is equivalent to the relation
Ve, n)=E@U(r, 1)+ O (U) (r, 7). (8.4)
The Maxwell equation can be written in the same operator form as (7.36), namely

U (1) = —iM[U (1) +q(U) ()] =T (1), (8.5)
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where

Ue Cy([—o0, T]; H' x HY), (8.6)
M is defined by
o eXX o e 0o V| -
M=iV "B, V= = . x , [EVI)=E@®V(r), (8.7)
-v: 0
and the nonlinearity is given by
— 2
qU) = > g, (U), g, (U)=i87'NJQ, (V). (8.8)
n=ng

We assume that 2 (r) satisfies the following condition.

Condition 8.1. Let B (r) be a positive definite Hermitian 6 x 6 matrix, which is a mea-
surable function of r and satisfies (3.6) We also assume that there exists an integer s > 2
such that

—~
®

_1’

[| E||C.Y(R3) < 00, (8.9)

< 00
@)

An examination of the arguments shows that the statements of Theorem 7.8 still hold
for the general Maxwell equations (8.5)—(8.8) provided that the linear generalized polar-
ization E (r) satisfies Condition 8.1 and the nonlinear generalized polarization Kyp. (U)
satisfies Condition 1.2 where P, are replaced with K,.

8.2. Coefficients from Sobolev classes. The smoothness requirements on dependence on
r of the medium coefficients € (r) and P, (r, -) were imposed in Conditions 1.1 and 1.2.
The conditions are formulated in terms of the spaces C* (R3) of s times continuously
differentiable functions, namely they require thate € C* (R3) and P, € C* (]R3 ) These
conditions can be relaxed allowing the coefficients to be in the local Sobolev spaces
WBS (RY) of bounded functions defined as follows. The space WBS (R?) consists of
functions that are locally in W$ (Rd ) with the local W -norms being uniformly bounded,
namely

2
l
IV 1y ey = S0P /|r|<1 ‘a{l ...8ddV(r+y)‘ dr.s=1.2.....

YERY o<y iy <s

(8.10)
The following statements are proven in [6].
Lemma8.2. Lets > d/2, f € W5 (R?), g € WBS (R?). Then
178l lw ey < Cr 11 liwg ey 18w e - (8.11)

where C1 depends only on s and d.
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Lemma 8.3. Let [ be an h-linear tensor in R" with coefficients that depend on the
variable r € R?. Assume that the coefficients belong to WBJ (Rd) with s > d /2. Then

forg e (W (RY))",
1f (815 wees &) s (rey < C2C5 11 f llws ey N1 lws (ret) - N1 llws (may > (8:12)
where Ca, C3 depend only on s, n and d.

The following lemma shows that the spaces H* and H}‘W are equivalent when E €
WB3.

Lemma 8.4. Let s > 2, ||Ellwg; < 00. Then (3.42) is still true.

Proof. According to (3.7) the inequality (3.42) has the form
e~ IVl gpe = (MU, EMSV)LZ + U, BV, < ep IVl - B13)
By (3.6) inequality (8.13) is equivalent to

MVl < (MUNEV) 4 (U Vo, < ¢4 1V o (8.14)

with ¢’_, ¢/, > 0. Since infinitely smooth functions that belong to MH’ are dense in
H?, it is sufficient to prove (8.14) for such functions V. By (3.21) MU =M*U, where
M is the same as in Lemma 8.6, therefore the E -dependent part of (8.14) coincides
with (M°U, M*V)p, . By Lemma 8.6 it depends continuously on E in WB} (R?) . By
Lemma 3.4 (8.14) holds for & € C* (R3) ; since C* (R3) is dense in WB;, (R3), passing
to the limit in (8.14) we obtain (8.14) for E in WBS (R%). O

In our results concerning the Maxwell equations the condition &, P, € C* (R3) that
requires continuity of s — th order spatial derivatives of the coefficients can be relaxed to
a less restrictive condition &, P, € WB} (R3 ) that requires local square integrability of
the derivatives. The exact statements are given in Theorem 8.5; their proof is based on
Lemmas 8.2, 8.3, 8.6 and 8.4. The proof of Lemma 8.6 is rather technical and is given
after the proof of Theorem 8.5.

Theorem 8.5. Let s > 2. Assume that Conditions 1.1 and 1.2 hold with the following

quantities being replaced: ||€||cs by |l€llwgs, Inllcs by IInllwgs, | Pallcs by | Pullwss,

|| P, | cs by || P, ”WBS' Then the statements of Theorems 1.3 and 7.8 are true (with mod-
2

ified constants Rg, Cg, R’Q, C’Q).

Proof. The proofs of Theorems 1.3 and 7.8 are based on the properties of the linear

Maxwell operator M and the nonlinearity Pyy, described by Lemmas 3.4 and 7.3,
respectively. By Lemmas 8.2 and 8.3 the inequality (7.6) can be replaced by

I Pullgs s < Coyy " | Pallwe - (8.15)

Py (5130
modified y. According to Lemma 8.4 the inequality (3.42) of Lemma 3.4 holds too.
Therefore the statements of Lemmas 3.4 and 7.3 can be applied in this case and Theorems
1.3and 7.8 hold too. O

Hence, cs in Lemma 7.3 can be replaced by || Poy(GiTse) ”WB; with a



Nonlinear Maxwell Equations in Inhomogeneous Media 577

Lemma 8.6. Let M = V** o ©, where V** is defined by (3.5), ® = O (r) is a
6 X 6 matrix with smooth r-dependent coefficients from C* (R3) , let V.e NgH*. Then
(MSV, M®V)y,, continuously depends on the matrix E in the metric of WB3, (R3) for
s> 2.

Proof. Let us introduce

K 2s

h(©1, ..., Oy) = (]_[ (Vo) V. [] (v”@i)v) : (8.16)
i=1 i=s+1 L,

where ®;, i = 1, ..., 2s are matrices with entries from C* (R3). Obviously, kg (©) is

a 2s-linear form of ®;, i = 1, ..., 2s. The continuity of this form is equivalent to its

boundedness. Note that using Leibnitz formula we can obtain the following representa-

tion:

N

[T(Ve)V=>" 4as(@1....0,)0°V, (8.17)
i=1 |Bl<s
where Ag (O1, ..., ) is a matrix of the form
Ag (O, ..., O)) = ZK1®1...KS®S (8.18)

and K; are matrix differential operators with constant coefficients of order n; > 0
satisfying

ny+..+ng=s—18/, (8.19)

and the number of terms in the sum depends only on s.
To prove boundedness of (8.16) we substitute (8.17) into (8.16) and get

h(©1,....,02) <C Y hg(O, ..., 0a),
|Bl=<s

(8.20)
2
hg (O, ..., On) = / |Ag (B1, ... ©)| |Ag (Og41, ... O2))| |3P V| dr.
Let ¢ (r) be an infinitely smooth, nonnegative function such that
$o(r) =0, ¢go(r)=1,as |[r| <3, ¢(r)=0,as [r|=6. (8.21)

Notice that the supports of all functions ¢g (r — 1), when 1 runs the set Z> of 3 -dimen-
sional integer valued vectors cover the entire R>. We also use the function

é1(r) =¢o (r/ (6)) . (8.22)
Clearly, ¢ (r) > 1 when ¢ (r) # 0, therefore there exists a constant C (s),

sup |3%o (1)] < C (s)¢1 (1), r € R’ (8.23)

lee] <s
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In addition, let

e =) gpr-D, dm=) ¢r-D. (8.24)

leZd leZd

® (r), ®; (r) are infinitely smooth periodic functions, ® (r), & (r) > 1. Note that

hg (O1, ..., O) = Z/%( |Ag (O1, ..., 0))| |Ap (Ogt1, .., ®2s)||3’3V|2dr
leZd
Z/|Aﬁ (O1, ... O9)| |[Ap (Ogt1, .., ®2Y)||¢0(r—l)8ﬁV(r)| dr.

lZd

We consider one term in the above sum
2
/ |Ag (©1, ... ©9)| |[Ap (Og41, ... O29)| |0 (r = 1) 3PV (1)|” dr. (8.25)
When s — |B| < 3/2 we use Holder inequality with
I/p+1/p' =1, 3/2p)=3/2—(s— 1B (8.26)
2
[ 146 @1 00 [A4p O, e 020] b0 @ =D 8"V (0
, , 1/p
< (/ |Ap (O1, ... ©)|” |Ag (Og41, ... O29) |7 dr) g, (8.27)
[r—1]<6
where
P 2p 1/p
Wgi (o (- —DV) = </ |¢0 r—Dho V(r)| dr> . (8.28)
When s — |B| > 3/2, we take p’ = 1 and

/ |4 (©1, .., 0)| |Ap (Os11, .... O29)] [0 (x = 1) 9PV ()| dr

gfl . 6|A,3 (©1, ..., 0| |Ap (®s+1,...,®25)|dr/\yﬁ2 (8.29)
with
g (Po (- —DHV) = S g0 (x — 1) 9PV (r)|*. (8.30)

In both cases using the Sobolev embedding theorem and (8.23) we obtain for Wg;,
i =1, 2, the estimate

\Ijﬁi =C ||¢0 (=D aﬂv (r) ||§15—Iﬁ|(31)

=C > /[a“ ¢0(r—1)aﬂV(r))| dr

|| <s—|B]
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<C )y /¢1 (x —1) [3°V (1) dr.

ler] <s

When s — | 8] < 3/2 using again Holder inequality with 1/q; + ... + 1/g2; = 1 we get

) , 1/p'
(f |K191...KO4|” |Ky11O541... Koy O |? dl‘)
[r—1]<6

2s

25 o, 1/(p'ai)
<1 < / |K;©; |47 dr) =[lIk®ilL, ) ©3D
i Ir—11<6 ’

i—1 i=1

We take
1 n; _
— = —,n=n1+ ..n2, (8.32)
qi n

where n; are from (8.19);% = 0 corresponds to the L, norm of K;®; (it coincides

with the C° norm since K;®; (r) are continuous). By the Sobolev embedding theorem
(see [42, 35] ) in the domain

B ={reR:r—1=6|, (8.33)
3 3
Wit = CO Wiy =5 <1=3.0=p<oo @34
3
”V”CO(BI) SC”V”HZ(B[)’ O<l_§ (835)

By (8.19) /i = 25 — 2|B| and by (8.26) 1/p = 1 — 2 (s — |BI) /3, therefore

3 _ 2(s — B n; _ 2(s — B n;
qip’ 7 2s —21B]

=n;, (8.36)

and since s > 3/2
3
qip'
Applying (8.34) with [ = s — n; we get from (8.31),

3
=n; <n;+ 5~ s. (8.37)

’ ’ /v
</ |K1®l~--Ks®s|p |Ks+1®s+1-~-K2s®23|p dl’)
[r—1]<6

2s 2s
< i [T1Ki®illgs—n < T 1Oillgs -
i=1

i=1

By (8.19) we get

' ’ I/P,
(/. 148 @1 001 45 s 020 dr)
r-l|<

N N
<G [ T1€illus sy < €[ [ 10illwes(zs) -
i=1 i=1
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Therefore

hg O1, ..., ©2) < Ca[ [ 1Oillwmgrsy D Y f¢1 @ =1 |9V @[ dr

i=l leZ4 |a|<s

= C4l_[ ”G)i”WB;(]R@) Z /(I)l (r) |3‘¥V (r)|2dr

i=1 la|<s
s
2
< Cs [ 10illwayz) Y / 9%V (1)*dr
i=1 lor|<s

N
= VIl oy Cs [ 1101wy oy -
i=1

After summation in 8 we obtain boundedness of 4 (01, ..., ®2) which implies the
continuity of the 2s - linear form 4 (®y, ..., @) . O
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